
GitLab at Faculty of Informatics

Roman Lacko

xlacko1@fi.muni.cz
Faculty of Informatics

Masaryk University

3. 10. 2018

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 1 / 44



Git and GitLab
A brief introduction

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 2 / 44



Git and GitLab
Properties and Goals

version control system
distributed
snapshot-based (as opposed to delta-based)
history authentication

Goals

speed
simplicity
non-linear development ("branching")
full distribution
scalability

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 3 / 44



Git and GitLab
A very brief history of Git

Linux Kernel VCSs

1991 – 2002 patches and archives
2002 – 2005 BitKeeper (propriertary DVCS)
since 2005 Git

first release 7 April, 2005
written in C, Bash, Perl, ...

Why Git?
man git: the stupid content tracker

Directed Acyclic Graph

Key-Value Database

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 4 / 44



Git and GitLab
A very brief history of Git

Linux Kernel VCSs

1991 – 2002 patches and archives
2002 – 2005 BitKeeper (propriertary DVCS)
since 2005 Git

first release 7 April, 2005
written in C, Bash, Perl, ...

Why Git?
man git: the stupid content tracker

Directed Acyclic Graph
Key-Value Database

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 4 / 44



Git and GitLab
Git Repository Managers

Additional features on top of Git repository
authentication
access control
collaboration mechanisms
e.g. fork, pull request

Software development tools integration
issue tracking
documentation (wiki)
automatic build and deployment

open source: GitLab, Gitolite, Gerrit, ...
proprietary: GitHub, BitBucket, ...

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 5 / 44



Git and GitLab
GitLab

Features

groups
Markdown and AsciiDoc wiki (another Git repository)
static page generator
issue tracking, boards, milestones
continuous integration
web IDE
push policies
...

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 6 / 44



Git and GitLab
GitLab FI

https://gitlab.fi.muni.cz/

GitLab Ultimate
virtual machine in Stratus.FI cloud
4 VCPU, 8 GiB RAM
256 GiB repositories (57 GiB used)

5600 projects
1900 users (1200 active)
40 groups

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 7 / 44



Git Workflows
Collaboration guidelines

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 8 / 44



Git Workflows
Best practices

Divide project into several repositories

plan ahead
later splitting is usually painful

Commit often

commit only related changes
git commit -p

do not commit large chunks
do not commit untested work
write short but descriptive commit messages

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 9 / 44



Git Workflows
Best practices

Divide project into several repositories

plan ahead
later splitting is usually painful

Commit often

commit only related changes
git commit -p

do not commit large chunks
do not commit untested work
write short but descriptive commit messages

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 9 / 44



Git Workflows
Best practices

Git is not a backup system

do not keep unrelated files
do not commit generated files
avoid storing large files
Git LFS

Learn to use Git’s safety belts

most unpublished mistakes are recoverable
git commit ––amend

git revert

git reflog

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 10 / 44



Git Workflows
Best practices

Git is not a backup system

do not keep unrelated files
do not commit generated files
avoid storing large files
Git LFS

Learn to use Git’s safety belts

most unpublished mistakes are recoverable
git commit ––amend

git revert

git reflog

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 10 / 44



Git Workflows
Best practices

Keep the history clean

avoid unnecessary merges
git pull ––rebase

git stash

Do not change published history

git push ––force

use protected branches feature if possible
scorn people who break this rule

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 11 / 44



Git Workflows
Best practices

Keep the history clean

avoid unnecessary merges
git pull ––rebase

git stash

Do not change published history

git push ––force

use protected branches feature if possible
scorn people who break this rule

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 11 / 44



Git Workflows
Miscellaneous Tricks

set user.name and user.email in Git configuration
git config KEY VALUE

make the initial commit empty
git commit ––allow-empty

use and maintain the .gitignore file

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 12 / 44



Git Workflows

What is a workflow?

set of rules for managing the repository
useful for collaborative projects
no universally best strategy

Categorization aspects
branching model
distribution model

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 13 / 44



Git Workflows
Branching Models

Single Branch

there is only one official branch, master

developers can have local (private) branches
branch cleanup before merge
rebase, squash, amend

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 14 / 44



Git Workflows
Branching Models

Long-Running Branches

branches represent different levels of stability
master – stable branch
devel – "bleeding edge" features
proposed – untested features
...

A B

C D E

F

master

devel

proposed

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 15 / 44



Git Workflows
Branching Models

Topic or Feature Branches

branches represent different features
merged into master on completion
sometimes uses rebasing instead of merging

A B C

F1 A F1 B F1 C feature1

F2 A F2 B feature2

master

D master

F2 A F2 B feature2

master master

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 16 / 44



Git Workflows
Branching Models

Topic or Feature Branches

branches represent different features
merged into master on completion
sometimes uses rebasing instead of merging

A B C

F1 A F1 B F1 C feature1

F2 A F2 B feature2

master

D master

F2 A F2 B feature2

master master

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 16 / 44



Git Workflows
Branching Models

Topic or Feature Branches

branches represent different features
merged into master on completion
sometimes uses rebasing instead of merging

A B C

F1 A F1 B F1 C feature1

F2 A F2 B feature2

master

D master

F2 A F2 B feature2

master master

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 16 / 44



Git Workflows
Branching Models

Topic or Feature Branches

branches represent different features
merged into master on completion
sometimes uses rebasing instead of merging

A B C

F1 A F1 B F1 C feature1

F2 A F2 B feature2

masterD master

F2 A F2 B feature2

master

master

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 16 / 44



Git Workflows
Branching Models

Topic or Feature Branches

branches represent different features
merged into master on completion
sometimes uses rebasing instead of merging

A B C

F1 A F1 B F1 C feature1

F2 A F2 B feature2

masterD master

F2 A F2 B feature2

master

master

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 16 / 44



Git Workflows
Distribution Models

Centralized Repository

one repository to rule them all
every member pulls and pushes to a single repository
the simplest strategy

works for small teams
projects migrated from different VCSs

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 17 / 44



Git Workflows
Distribution Models

Integration Manager

a single official repository
developers have public and private clones

new features are published in public repositories
official repository maintainer is asked to pull changes

easier with repository managers
repository forks
pull requests (GitHub), merge requests (GitLab)

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 18 / 44



Git Workflows
Distribution Models

Dictator and Lieutenants

optimized for huge projects, e.g. Linux Kernel
mostly combined with Feature Branches Models

developers work in feature branches
lieutenants merge these branches on their own master

the dictator merges lieutenants’ master into his own
the dictator pushes his master to the official repository
developers rebase their branches on top of new master

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 19 / 44



Git Workflows
Examples

Master Only Workflow

Single Branch + Single Repository
project maintainer approves changes

GitHub Workflow

Feature Branches + Single Repository
code review before merging to master

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 20 / 44



Git Workflows
Examples

GitFlow

combination of Long-Running Branches and Feature Branches
usually Single Repository model

master – deployed in production, hotfixes
release – stable code
devel – approved features

feature branches based on devel

hotfix branches based on master
must be merged to release and devel as well

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 21 / 44



GitLab Repository
Basic setup and features

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 22 / 44



GitLab Repository
Project path

https://gitlab.fi.muni.cz/PATH/NAME.git
ssh://git@gitlab.fi.muni.cz:PATH/NAME.git

project path should be chosen carefuly
consider group namespaces for long-term projects
projects referenced from theses or papers

Personal namespaces are not permanent.

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 23 / 44



GitLab Repository
Sharing

Visibility

easiest sharing option
Private (default in GitLab FI), Internal or Public

Members and Groups

fine-grained access control
members with different roles
Maintainer, Developer, Reporter or Guest

project can be shared with a group
this does not move the project to a different namespace

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 24 / 44



GitLab Repository
Secure Shell Access

User (SSH) Key

grants access to all projects of the user
unique in the entire GitLab instance
unsuitable for automated repository access

Deploy Key

limited to project scope
can be enabled for more than one project
designed for automatic deployment

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 25 / 44



GitLab Repository
Repository policies

Voluntary security features

Push options

enforce verified commiter e-mail
require digital signature
commit message requirements

Branch and Tag protection

disallow developers to force push
prevent unauthorized merge into protected branch
protect specific tags

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 26 / 44



GitLab Repository
Workflow support

Repository fork

clones the project to the user’s namespace
upstream - downstream

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 27 / 44



GitLab Repository
Workflow support

Merge request

notifies the developer
allows code review
support for automatic testing
variety of merge strategies

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 28 / 44



GitLab API
Scripting and task automation

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 29 / 44



GitLab API
Overview

HTTP-based RESTful API

HTTP/2.0
REST properties
JSON data

endpoint: https://gitlab.fi.muni.cz/api/v4

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 30 / 44



GitLab API
Usage

Authentication

Personal Access Tokens
Session Cookies
Impersonation Tokens (administrators only)

Direct access

$ curl -L -H ’Private-Token: <...>’ https://gitlab.fi.muni.cz/api/v4/projects

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 31 / 44



GitLab API
Clients

implementations for various languages
Ruby, Python, Perl, Java, .NET, ...
easy intergration into other tools

use GitLab qw(:project_visibility);

my $gitlab = GitLab::API->new(
Host => “gitlab.fi.muni.cz“,
AuthToken => “************“,

);

foreach my $login (get_students) {
my $project = $gitlab->project_by_id(id => “$login/pb161“);

if ($project->{visibility} ne PROJECT_PRIVATE) {
print STDERR “$login busted!\n“;

}
}

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 32 / 44



GitLab API
Major applications at FI

Student homework repository audit

project visibility
members
events
commit authors

Integration with FI services

group and subgroup members synchronization
repository quotas
external accounts
blocked accounts

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 33 / 44



GitLab Continuous Integration
Webhooks, automatic tasks, tests and deployment

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 34 / 44



GitLab Continuous Integration
Webhooks

trigerred on certain events (push, new issue, build fail...)
user-defined HTTP callbacks

POST request with event details
token and SSL verification
branch filtering

Applications

course web generators (PB071, PB161, PV264, ...)
static webpage generators (Jekyll, Hakyll)

build fail notifications
group membership on first login
system webhooks

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 35 / 44



GitLab Continuous Integration
GitLab CI Runners

dedicated services
specific, group and shared
periodical requests for jobs

.gitlab-ci.yml configuration file
describes tasks for the runner

project build
integration tests on merge requests
deployment

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 36 / 44



GitLab Continuous Integration
Specific and group runners

accept jobs from given projects and groups
optimized for target projects

easy to set up
can run on workstations and notebooks

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 37 / 44



GitLab Continuous Integration
Specific runner

gitlab-ci.fi.muni.cz

Docker containerization
variety of images available
new or custom images on demand

requires shared-fi project tag

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 38 / 44



GitLab Continuous Integration
Applications

lab-specific tasks
homework testing
webpage deployment

unix/ci-examples.git repository

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 39 / 44



References
Uncovered features, additional resource

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 40 / 44



References
Advanced features

Issue tracker, Boards, Milestones
Epics
Pages
OmniAuth
Container Registry
Kubernetes

new features are still being developed

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 41 / 44



References

Git

man gittutorial

Pro Git Book (2nd Edition)
Git Best Practices
Git-Tower Best Practices

Git Workflows

man 7 gitworkflows

Atlassian BitBucket Workflows
Git Workflow Guide
...
just google git workflows

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 42 / 44

https://linux.die.net/man/7/gittutorial
https://git-scm.com/book/en/v2
https://sethrobertson.github.io/GitBestPractices/
https://www.git-tower.com/learn/git/ebook/en/command-line/appendix/best-practices
https://linux.die.net/man/7/gitworkflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.toptal.com/git/git-workflows-for-pros-a-good-git-guide


References

GitLab

GitLab Feature List
GitLab API Documentation
GitLab User Documentation

FI resources

Technical Information on GitLab
Technical Information on Stratus.FI Cloud

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 43 / 44

https://about.gitlab.com/features/
https://docs.gitlab.com/ee/api/
https://docs.gitlab.com/ee/user/index.html
https://www.fi.muni.cz/tech/unix/gitlab.html
https://www.fi.muni.cz/tech/unix/stratus.html


References
Try GitLab

https://hub.docker.com/u/gitlab/

GitLab Docker Image
free CE version
30 days evaluation EE version

R. Lacko (FI MU) GitLab at Faculty of Informatics 3. 10. 2018 44 / 44

https://hub.docker.com/u/gitlab/

	Git and GitLab
	Git Workflows
	GitLab Repository
	GitLab API
	GitLab Continuous Integration
	References

