
SECURE AND FAULT TOLERANT
DISTRIBUTED FRAMEWORK
WITH MOBILITY SUPPORT

Lukáš Hejtmánek
Institute of Computer Science,
Masaryk University,
Botanická 68a, 602 00 Brno,
Czech Republic
xhejtman@mail.muni.cz

Abstract
In this paper, we propose an architecture of distributed data stor-

age framework that incorporates fault tolerance, mobility support, and
security. Main goal of our system is to provide equal opportunities for
both connected and disconnected clients. Consequence is that mutual
exclusion may not be involved. Data storage systems without mutual
exclusion suffer from update and name conflicts. We avoid the update
conflicts using immutable data storage. Mutable data is provided via
either file versioning or Redo Logs. The name conflicts are automati-
cally resolved without user’s guidance, the file names are automatically
changed to non-conflicting names, the directories are represented im-
plicitly and thus we avoid conflict names connected to directories. Be-
cause the file names may be changed by the system, each file version
is assigned an immutable globally unique identifier using which the file
version can be accessed. Security model is based on certificates and
VOMS attributes. This system is suitable for use within Grid VOs and
it also supports services provided simultaneously to different VOs. Our
prototype implementation exhibits very favorable performance so that
it could be used as robust, secure, highly reliable and high performance
Storage Elements.

Keywords: Distributed data storage, Logistical Networking, Security, Fault toler-
ance, Disconnected operations



2

1. Introduction
Large scale distributed systems consisting of thousands of nodes have

serious problems with failures. If such systems have a large number
of components (disks in disk arrays) and their total capacity is in the
order of petabytes, then according to [27], they face component failure
once a day. Fault tolerance can be achieved using some kind of redun-
dancy. The redundancy can be achieved in a number of ways, starting
with replication that is space but not CPU consuming, and ending with
space conserving error correction codes [14]which require a lot of CPU
power and furthermore, data modification is a quite complex and expen-
sive operation. However, error correction codes are not commonly used
in large scale distributed systems because firstly they are expensive to
update and secondly, failure is the rule rather than an exception. In our
approach, we opted for replication, with data stored in multiple iden-
tical copies. It is CPU conservative and it does not require extensive
updating operations.

On the other hand, even simple a replication brings complexity into
the architecture of distributed systems. Replication of read only data
is trivial, whereas replicating mutable data brings problems with the
consistency of the replicas. There are several approaches to dealing
with replication and this consistency problem. We can divide replication
into a primary backup approach and a state machines approach [24].
Primary backup approach refers to storing data on a fixed replica and
this fixed replica distributes data to the other replicas. In the state
machines approach data is stored directly to all replicas. It also means
that replication is client driven whereas primary backups can be both
client driven or server driven. The primary backup approach has a
fundamental problem with a single point of failure. If a primary copy
(i.e., the node that spreads data to the other replicas) is not accessible
(e.g., due to network partitioning) then data updating is not possible.
The state machines approach has a problem with data synchronization in
network partitioning, as data updates in distinct network partitions may
lead to different data states on particular nodes—we call this situation
an update conflict. We can see that these two approaches represent a
trade off between low availability (conflict avoidance) and low coherency
(conflict resolution). A combination of the state machine and primary
backup approaches is called the multiple-primary backup. In this case,
we define a set of primary servers that are kept consistent using the sate
machines approach and they collectively spread data to other replicas.
This approach does not contain a single point of failure and users do not



Secure and Fault TolerantDistributed Frameworkwith Mobility Support 3

need to upload data to all replicas. In this case, consistency is limited
similarly to the state machines approach.

All the above presented approaches may be combined with two other
concepts: pessimistic and optimistic replication [16]. Using pessimistic
replication, data is spread synchronously to all replicas (and replicas are
locked meantime, i.e., we mutually exclude concurrent updates). Using
optimistic replication, data is spread asynchronously to all replicas and
no exclusion is needed. Even these approaches represent yet more trade
off between low availability (pessimistic replication) and low coherency
(optimistic replication).

Data redundancy on storage servers is not a panacea for failures.
When network failure occurs between the client and the distributed stor-
age system, data redundancy on storage servers does not help. There-
fore, we need to include the clients into replication system where the
clients act as partial replicas of the storage servers. To completely con-
ceal network failures, the client’s replica has to provide all operations
needed by the client, with the exception that only locally satisfiable re-
quests can be completed. The same functionality can be also used to
support a client’s mobility. Mobility (or disconnected operations sup-
port) refers to the ability of a frequent connection and disconnection
of the client and mainly the ability to work with data even when no
connection is available. An example of such a system is CVS [3]where
the users may check out files, disconnect from the network, work with
files, connect to the network and commit changes. However, this mobil-
ity involves one fundamental problem connected to the fact that there
is no upper limit on the duration of the disconnection. Without this
limit, we cannot use any kind of mutual exclusion for conflict avoidance
because prospective locks are either potentially held forever or prema-
turely released. Another challenge connected to mobility support is how
to provide equal opportunities for connected and disconnected clients
(with the obvious exception that disconnected clients cannot access ar-
bitrary data but only data marked as accessible in disconnected mode),
e.g., the disconnected clients may create new files and create new direc-
tories. These operations usually require mutual exclusion to avoid the
creation of multiple directory entries of the same name. In this paper,
we provide an approach to dealing with these problems and we provide
a distributed framework with unrestricted mobility support.

Our aim is to build a large scale distributed storage system that pro-
vides (1) fault tolerance, i.e., it provides data replication, (2) mobility
support, i.e., the system provides disconnected operations and mainly
offers equal opportunities to both connected and disconnected clients,
and (3) reasonable security model with properly authenticated and au-



4

thorized users. We expect that our work can be highly usable in Grid
environments as secure, robust, highly reliable and high performance
Storage Elements [6].

The rest of this paper is organized as follows. In the Section 2, we
discuss the design principles of our proposed distributed data storage
framework. Section 3 describes some preliminary experiments. In the
Section 4, we discuss related work. Concluding remarks are given in
Section 5.

2. Design Principles
Our goal is to provide a storage architecture where data is highly

available and coherent. As we stated above, these two requirements
are contradictory except in one case—immutable data storage, where
data can be written only once and read many times (WORM, write
once read many). For this reason, we have chosen a storage substrate
that provides Write Once Read Many semantics of data storing. On
this storage substrate, we aim to build a mutable data storage system
that preserves data availability and data coherency. This concept of
conflicts avoidance applies equally to mobility support as it does not
involve mutual exclusion.

2.1 Immutable Data Block Substrate
In essence, our storage framework works with files. Files are decom-

posed into data blocks and metadata. The metadata contains references
to data blocks and basically represents the files, it is equivalent to the
well known UNIX I-node, the main difference being that data blocks are
distributed across many storage nodes instead of being stored on a local
disk.

Replicating read only data blocks does not pose any problem. We can
adopt replication strategies mentioned in the introduction which would
provide higher availability and low data consistency: data inconsistency
is an issue of concurrent updates of data. In dealing with immutable
data, data consistency is not an issue. We use the multiple-primary
backup approach for data replication. This means that users may upload
a data block to any storage node and may request the storage node to
replicate the data block to another storage node.

Such an approach has two advantages. Firstly, the user does not need
to upload data blocks to all replicas which could overload his network
connection which can have lower bandwidth than network connection
between storage servers. Secondly, there is no single point of failure
as a client may contact any storage node. Because data blocks cannot



Secure and Fault TolerantDistributed Frameworkwith Mobility Support 5

be updated, the data coherency is automatically provided. We enforce
strict ordering of data and metadata, i.e., we add references in metadata
to data blocks if the data blocks are completely stored on storage servers.
Consequently, a referenced data block (which may be a replica of another
data block) always exists on the storage server.

We need metadata replication for two reasons. The first is that the
clients can cache metadata so that the clients do not overload metadata
servers and the cached metadata is basically a replica of metadata. And
the second is that files are not accessible without metadata, thus non
replicated metadata forms a crucial single point of failure. However,
replicating metadata is not without its problems. We have stated that
metadata contains references to data blocks. If we replicate data blocks,
we add more references to the corresponding metadata. This means
that creation (or deletion) of data blocks changes metadata, and conse-
quently, the metadata is no longer read only which means that it cannot
be easily replicated. On the other hand, using simple consistency vec-
tors1, we can easily detect metadata changes and in particular all of the
metadata can always be merged into a single file. This is due to the fact
that metadata can be seen as a set of data blocks. We can merge meta-
data using a standard union operation to all the sets. The only problem
here is to distinguish between the addition and removal of a data block,
but this can be solved using the above mentioned consistency vectors.

Using the principles outlined above, we are able to provide distributed
and replicated immutable data storage. While immutable storage is
quite suitable for distribution and replication, it is quite unsuitable for
users. Therefore, we show the way how to provide mutable distributed
and replicated data storage on top of immutable substrate.

2.2 Mutable Data Storage with an Immutable
Data Block Substrate

Providing a mutable file system on top of the immutable storage sub-
strate involves creating a new file whenever a block is changed. The new
data blocks must be added to the corresponding metadata which results
in a change in the metadata. In the previous subsection, we stated that
mutable metadata does not pose a problem, while the mutation of meta-
data is caused by addition or removal of replicated data blocks. This

1We use the term consistency vectors instead of the standard term version vectors [13]as we
use the term version for file versioning. A mutable object is assigned a serial number. We
increase the serial number with each object modification and we also maintain the previous
serial numbers. Using serial numbers of the object and their history, we are easily able to
detect changes in replicated objects.



6

property does not hold for mutations caused by file updates. Concurrent
updates of the same file may cause update conflicts that may be difficult
to resolve (user guidance may be required). Consequently, immutable
metadata is needed to avoid update conflicts (immutable metadata with
the exception of adding or removing data blocks replica). However, the
immutable metadata imposes immutability also on files.

For immutable metadata, we can use the same approach as for the
read only data blocks. Updating the file results in new metadata. Such
approach basically creates a form of file versioning. Each set of meta-
data for a particular file corresponds to a particular file version. Taken
together, we present the so called versioned files that are mutable files
consisting of immutable file versions. File versions are represented by
immutable metadata that references immutable data blocks. Every up-
date of a versioned file results in a new file version, i.e., in new data
blocks and in new metadata. We can use a replication strategy that
provides high availability of data but must deal with update conflicts.
Using such a strategy, we provide high availability of data which avoids
update conflicts by read only data and we still provide mutable files. To
avoid an explosion of version numbers of versioned files, we use open-
close semantics. This means that the new file version is created only
after the file is closed.

However, two problems still remain: (1) These principles do not deal
with name conflicts—i.e., conflicts caused by the creation of multiple
directory entries with the same name. We could use directory versioning
which solves the problem but this is characterized by an explosion of
number of directory versions. Changing any directory entry increases
a number of directory versions up to the root directory. (2) Another
problem is how to represent non-versioned mutable files. A new file
version is usually created after the file is closed which makes it impossible
to (read/write) share files between parallel applications. Both problems
are addressed in the following sections.

2.2.1 Name Conflicts. There are many approaches to dealing
with name conflicts but basically we can divide them into two groups:
(1) conflict avoidance and (2) conflict resolution. Name conflicts can
be avoided by using either a mutual exclusion or a read only approach.
We have stated that versioning is not suitable for directories due to ver-
sions explosion. On the other hand, mutual exclusion is not suitable for
mobility unless we impose an upper limit to the duration of the discon-
nected state. Consequently, we must use one of the conflict resolution
strategies.



Secure and Fault TolerantDistributed Frameworkwith Mobility Support 7

Name conflicts that arise from file name operation such as create and
rename are solved using automatic renaming. Such a conflict is detected
either when the new name is created or when the client switchs from
the disconnected mode to the connected mode. During this transition,
data and metadata are synchronized with storage servers. If the client
created a new file name, it is created on the storage servers too and it may
cause a name conflict. The conflicting name is automatically changed.
For instance, three conflicting names testfile.txt are automatically
resolved into two new names testfile.txt#1 and testfile.txt#2 (one
of the files keeps the original conflicting name). The consequence of this
approach is that the file name cannot be used as an immutable file
identifier. Thus, beside file name, each file (and each file version) is
assigned a globally unique identifier that can be used to access the file
instead of using the file name.

Replication of versioned files leads to special name conflicts. We dis-
tinguish versions via numbering them and we use a deterministic algo-
rithm to assign file version numbers2. This algorithm runs at each replica
(storage server) and is local to that replica. It may happen (after concur-
rent updates of the same file version) that two instances of the algorithm,
each running on different replica, assign the same version number to file
versions with different content. We solve such name conflict by using
our replica synchronization algorithm [8]. This algorithm does not in-
volve mutual exclusion which would cause the non-availability of data
or metadata, but it is still able to guarantee identical version numbers
for the same file version on all replicas.

Similarly, name conflicts may arise from directory name operations
such as create and rename. Also in this case, these conflicts are usually
avoided using mutual exclusion. We avoid directory name conflicts via
implicit directory representation. This means that we use a flat directory
structure and a full path is an attribute of a file. The downside of
this approach lies in the absence of authorization information bound to
directories. Authorization information can be associated with files only
and the user cannot create directories exclusively for himself. On the
other hand, we believe that extended ACLs for files can mostly substitute
ACLs for directories, this is discussed in more details in Section 2.4.

2.2.2 Non Versioned Mutable Files. Our system does not
support mutable files in their natural way. We simulate mutable files

2We increment the last version by one to get the new last version. The increment is made
locally on the replica thus it is possible that two or more replicas assign the same number to
different file versions.



8

via versioned files. However, versioned files with open-close semantics
cannot be shared between applications that update the file in parallel.
We represent mutable files as versioned files but with changed semantics.
Within this changed semantics, the new file version is created either (1)
after predefined timeout, or (2) after predefined amount of new data, or
(3) after the mutable file is closed. It is clear that using this extended
semantics, the number of file versions rapidly grows. To avoid an explo-
sion of version numbers, we remove obsolete versions, i.e., file versions
which are completely overwritten by newer versions.

If storage servers are reachable, the client checks before each read or
write operation whether a new file version is available. If it is available,
the client downloads and uses the new metadata (file version). Using this
approach together with the extended access semantics described above,
updates are distributed among other online clients within a predefined
timeout.

To avoid disk space wastage caused by a potentially large number of
file versions and also due to the fact that file updates are usually small
compared to the overall size of the file, we store initial file versions and
then we store only updated records, i.e., the differences from the previous
file version. This approach is the well-known log structured file system
approach that use Redo Logs [15]which is a log of immutable update
records. Each update record contains information about the update,
the offset in file, and the length of the update.

However, using this concept of Redo Logs, we do not guarantee that
the updates are instantly visible to all other participants. And because
the files are mutable and we do not use mutual exclusion, update con-
flicts may arise after the concurrent modification of the same area of the
same file. The conflicting updates are resolved automatically so that one
of conflicting updates prevails the others are lost. We do not explicitly
specify which update prevails and which one is lost. Neither do we guar-
antee that subsequent updates have the same order for all participants
except two cases. The first case is, if all subsequent updates have been
distributed in the same way through the network and the second is if
a time period between two subsequent updates is higher than the time
period required to distribute updates between all participants. If such
behavior is not acceptable then the application level mutual exclusion
should be used.

2.3 Metadata Handling
We store metadata on metadata servers. Metadata can be replicated

and replication is done per versioned file (or its equivalent—non ver-



Secure and Fault TolerantDistributed Frameworkwith Mobility Support 9

sioned mutable file). Replication of metadata is driven by a dynamically
elected replication coordinator which is responsible for coordinating the
replication for a single update of a single file. Further updates and dif-
ferent files can be coordinated by another coordinator. Replication runs
asynchronously to updates. Our replication algorithm can be found
in [8].

Metadata servers are distributed across a network. Metadata is spread
among metadata servers using virtual distributed search tree P-Grid [1].
We have chosen this peer-to-peer system because it is possible for the
clients to gain routing tables from the metadata servers and from which
the clients are able to predict where the metadata is stored. This pre-
diction is precise if the set of metadata is stable (without any metadata
server connects or disconnects) which should be the case most of the
time.

As stated above, we do not explicitly represent directories. Path
names are an attribute of files but we use path and file name as a key
to the P-Grid system to find file location. This approach is problematic
for directory content listing because files of a single directory may be
spread among many metadata servers. Thus, for directory listing, the
client must contact all metadata servers. Solving this problem is one of
our future tasks.

2.4 Security
We can say that file systems internally decompose files into data and

metadata. In terms of UNIX-like file systems, we have I-nodes (meta-
data) and data blocks that are referenced by these I-nodes. Assuming
that a user does not have direct access to raw storage media, the user
cannot access data without knowing a particular I-node, therefore access
control is usually made at this level. Once users are allowed to access
the I-node, they are then granted access to the data. However, if we
split metadata and data into two independent services, we must require
access control verification at both services. We then face the problem of
how to force a user to pass access control on both services in a defined
order and how to verify that both services have granted or denied access.

The issues have been reduced to the following problems. We are given
a set of services. We need to force a client to obtain a token from the
services in a defined order given by service providers. We require that
no service is skipped by the client and that the client cannot skip a
service using an old token. Further, we require that the verification of a
token is always local and no service is required to contact a third party
during the verification process. The second problem is how to provide



10

cacheable time limited metadata to the clients. The metadata manager
issues metadata to the client, so the client may cache metadata for an
unlimited period, potentially, which makes authorization irrevocable.
Since the size of the metadata is not insignificant, the creation of a
signature can take significant period of time. Signed metadata must be
valid only to the particular user and only for a specified time period.
Signature must be certifiable offline. The solution to these problems
is presented in [9]. This solution extends network storage stacks from
logistical networking so that each part of the network storage stacks
authenticates and authorizes the user. User authentication is based on
PKI, authorization is based on ACLs.

As we do not explicitly represent directories, we cannot bind ACLs
with them. ACLs bound to directories basically serve as shortcuts for
setting appropriate ACLs to individual files. For instance, we may deny
entry to a directory instead of denying access to the individual files.
Thus, we can simulate directory ACLs by file ACLs except in two cases:
(1) we cannot deny the creation of new files in a directory and (2) we
cannot hide the subdirectories (which is usually done by denying direc-
tory listing). Neither we can deny entry into a directory but if we deny
access to all files and set all files to be invisible (both possible using an
appropriate file ACL) in a subtree beginning in this directory, the result
is the same. Taken together, we believe that the inability to bind ACLs
with directory does not impose a real problem.

3. Experiments
Our prototype implementation utilizes the IBP protocol from the Lo-

gistical Networking concept [2]. Using the IBP protocol, we build an
immutable data blocks storage substrate. We are using our own im-
plementation of the components of the Logistical Networking with an
extended security model as described in [9]where also performance tests
related to the extensions can be found. The IBP servers are implemented
in C language. The IBP servers allow to store data blocks and allow
modification of these data blocks but the latter feature is not utilized in
our system. The metadata (called eXnodes in the Logistical Network-
ing) is represented by XML files. The metadata is stored at metadata
managers which are implemented in Java language. The client side of
both IBP and metadata interfaces is implemented also in Java language.

Our experiments have been focused on file storage and file retrieval
and their performance on high speed networks. We have used a single
client equipped with 10 Gbps fibre optics network card, 8 GB RAM, and
two dual-core Intel Pentium Xeon processors. We have used eight stor-



Secure and Fault TolerantDistributed Frameworkwith Mobility Support 11

age servers, each equipped with 1 Gbps metallic network card, 8 GB
RAM, and two dual-core Intel Pentium Xeon processors. The stor-
age servers use disk array consisting of two 320 GB SAS disks orga-
nized as software RAID 0. We are able to store data into a single
file at 139 MB/sec (1112 Mbps), and to read data from a single file at
178 MB/sec (1424 Mbps). Using iperf [10]network performance tool, we
are able to achieve 750Mbps between the client and any storage server
using a single TCP stream. This limited transfer rate is caused by the
network interface card at storage servers. However, using multiple TCP
streams simultaneously from the client to all the storage servers, we can
achieve aggregate rate of 5.6Gbps. This special setup has been used
to demonstrate that our system allows to utilize extensively the storage
servers in parallel.

Table 1. A single file upload and download transfer rate and RAM and CPU usage.
The usage and transfer rate is measured at the client.

Block Size File Size Transfer Rate RAM CPU

32MB 156 GB 3656 Mb/sec down 756 MB 90%

3392 Mb/sec up

2MB 9.7 GB 2488 Mb/sec down 90 MB 50%

2000 Mb/sec up

We did several tests to evaluate our prototype implementation. The
first simple tests evaluated overall performance of storing and retrieving
large files from and to client’s memory only to eliminate client’s local disk
performance. We evaluated transfer speed for file upload and download,
CPU usage, and RAM usage for two data block sizes: 2MB and 32MB.
We expect that the latter size will likely be used. Each file comprised
10,000 data blocks. The results can be seen in Table 1. We can see that
using 32 MB blocks, we are able to saturate available network bandwidth
up to 65% (for download) and up to 60% (for upload). Using 2 MB
blocks the bandwidth saturation is lower due to higher overhead when
manipulating smaller data blocks. We can also see that larger data
blocks require a lot of memory. To achieve such high transfer rates, the
client must allocate at least two data blocks for each storage server, thus
512 MB is occupied by data blocks cache for the 32MB data blocks and
32 MB for the 2 MB data blocks. Rest of the memory is occupied by the
Java application itself. In the case of 2 MB data blocks, we can see lower
CPU usage because the smaller blocks require more messages to be sent.
This is because CPU is idle during the message sending process.



12

We stated that mutable files are represented by the Redo Log. It may
happen that the Redo Log size is not negligible. The whole Redo Log
is traversed and processed when the file is opened. Therefore, we have
evaluated relation of the Redo Log size and the duration of file opening.
The results can be found in Figure 1. We can see that up to 1,000 update
records, the duration of file open is negligible. Assuming 32 MB blocks,
32 GB file is opened within 1 second. There is optimization possible as
we could merge individual update records into a bigger single update
record. This optimization is left as a future work.

Figure 1. Duration of the file open operation for varying number of update records
in the redo log.

100 200 400 800 1600 3200 6400
Redo Log Size

0.1

1

10

T
im

e 
(s

ec
)

We have not evaluated latency of replicated data blocks because the
storage servers have relatively slow network connection to each other
compared to the connection to the client. Thus data replication should
be originated directly from the client and under such conditions, storing
of two replicas of a file takes exactly once more time than a single replica
of the file.

On the other hand, metadata replication is handled by our distributed
algorithm and for this reason, we evaluated performance of distribution
of the metadata updates. The results can be found in Figure 2. We can
see that our algorithm scales well and that distribution of the metadata
updates takes about 10% of time of data distribution. The distribution
process runs asynchronously to update operation. The Figure illustrates
time limit within which the metadata updates are distributed to all the
replicas.



Secure and Fault TolerantDistributed Frameworkwith Mobility Support 13

Figure 2. Latency of file update distribution among specified number of replicas.

2 3 4 5 6 7 8 9 10
Number of Nodes

0

5

10

15

20

25

30

35

40

45

50

55

60

T
im

e 
(m

s)

Our prototype implementation has shown feasibility of our system.
Our preliminary experiments have manifested that our system provides
high performance distributed data storage. The clients can access the
storage servers in parallel to utilize available network bandwidth. The
experiments have also shown that some parts of the system will need
optimization in future, such as opening of mutable files consisting of a
large number of the update records.

4. Related Work
There exist many different distributed storage systems incorporating

different approaches to the data storage problem. There are standard
distributed file systems with POSIX access semantics such as AFS [18],
NFSv4 [20], GPFS [19], Lustre [4]which, however, do not contain support
for mobility and their support for replication is very limited (AFS—read
only replication, NFSv4—incomplete specification, no complete imple-
mentation, GPFS—fixed number of replicas, Lustre—no replication of
metadata servers).

The Coda [17]file system was one of the first file systems that pre-
sented disconnected operations. Compared to AFS, the Coda also pro-
vides read write optimistic replication. Replication granularity is per
volume rather than per file. Volume is a set of files belonging to partic-
ular directory subtree. Coda also distinguishes between connected and
disconnected mode, and it reports conflicting updates to the user. The
security of the Coda file system is based on user IDs and group IDs.



14

In addition to these distributed file systems there exist experimental
distributed storage systems which have either POSIX access semantics
or access via special API.

Ceph [25]file system is replicated, scalable, and high performance dis-
tributed file system. It decomposes files into data blocks and metadata.
Data blocks are stored to object storage devices (OSD). Data blocks are
organized into placement groups and using CRUSH (Controlled Repli-
cation Under Scalable Hashing [26]) are mapped to OSDs. Compared to
our system, this approach has the disadvantage, in that if we add more
OSDs, some of the existing data blocks may be required to migrate to
the new OSDs. Replication uses a primary copy approach using a mon-
itor which coordinates the election of the primary copy holder. The
monitor impose a single point of failure, on the other hand a monitor
is not required if the primary copy holder is reachable. Ceph does not
support mobility or file versioning. Security is based on time limited
capabilities issued and signed by metadata servers.

Ivy [12]is a read write peer-to-peer file system. It uses DHash [5]peer-
to-peer block storage substrate, and all data is stored as a value into
a distributed hash using data checksum as its key. DHash provides
replication of immutable data blocks. A mutable file system is provided
via a log that forms a linked list of immutable log records. The user
processes his own log and all publicly available logs and searches for the
most recent changes. Compared to our system, Ivy provides only open-
close access semantics. It does not explicitly support file versioning but
it supports snapshots. It does not support mobility.

Eliot [21]is another peer-to-peer file system built on immutable peer-
to-peer storage. It uses Charles [22]reliable and fault tolerant block
storage substrate. But it uses only a single mutable metadata service
which degrades Eliot fault tolerance.

The large scale storage system, OceanStore [11], provides file version-
ing (old versions are read only), disconnected operations and replication.
However, performance is limited due to slow file lookup and also due to
protocols for the Byzantine agreement. Compared to our system, the
client is not allowed to predict data location and speed up metadata
manipulation.

The Google file system [7]is an application level replicated distributed
file system used for the well known Google search engine. Its architec-
ture is based on a single master server (which imposes a single point of
failure) and multiple chunk servers. The architecture is optimized for
fast reading and appending files. Compared to our system, it does not
provide file versioning or mobility support. Our system also supports
replication of our equivalent to the Google’s master server.



Secure and Fault TolerantDistributed Frameworkwith Mobility Support 15

The L-Store [23]application level distributed file system closely resem-
bles our distributed data storage system. It is also based on IBP [2]pro-
tocol. It supports replication of both data and metadata. Compared
to our system, it does not provide file versioning or mobility support.
Its security model requires online communication between a metadata
server and an IBP server which makes it less robust compared to our
security model.

5. Conclusions
We have designed a reliable, fault tolerant, and secure framework for

distributed data storage with mobility support. The framework offers
equal opportunities for both connected and disconnected clients which
requires the system not to involve mutual exclusion. Systems without
mutual exclusion suffer from update and name conflicts. We avoid the
update conflicts using immutable data storage. Mutable data is pro-
vided via either file versioning or Redo Logs. The name conflicts are
automatically resolved without manual guidance of a user, the file names
are automatically changed to non-conflicting names, the directories are
represented implicitly. Thus we avoid conflicts in directory naming. Se-
curity model is based on certificates and VOMS attributes. This makes
the system suitable for use within Grid environments with the VO con-
cept and it also supports services provided simultaneously to different
VOs.

We have designed and implemented a prototype implementation and
performed preliminary performance evaluation. This evaluation shows
that even the prototype implementation exhibits very favorable perfor-
mance so that it can be used as secure and high performance Storage
Element service.

Acknowledgments
This research is supported by a research intent “Optical Network of

National Research and Its New Applications” (MŠM 6383917201) and
by the CESNET Development Fund project 172/2005. I would also like
to thank to Luděk Matyska and to Petr Holub for stimulating discussions
and help with the work described in this paper.

References

[1] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic,
Manfred Hauswirth, Magdalena Punceva, and Roman Schmidt. P-Grid: A Self-
organizing Structured P2P System. SIGMOD, 32(3):29–33, 2003.



16

[2] M. Beck, T. Moore, and J. S. Plank. An end-to-end approach to globally scalable
network storage. SIGCOMM Comput. Commun. Rev., 32(4):339–346, 2002.

[3] Brian Berliner. CVS II: Parallelizing software development. In Proceedings of
the USENIX Winter 1990 Technical Conference, pages 341–352, Berkeley, CA,
1990. USENIX Association.

[4] Cluster File Systems, Inc. Selecting a Scalable Cluster File System, 2005. Cluster
File Systems, Inc. Whitepaper.

[5] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.
Wide-area cooperative storage with CFS. In SOSP ’01: Proceedings of the eigh-
teenth ACM symposium on Operating systems principles, pages 202–215, New
York, NY, USA, 2001. ACM Press.

[6] EGEE. Site Access Control Architecture DJRA3.2. 2005. https://edms.cern.
ch/document/523948.

[7] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File Sys-
tem. In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating
systems principles, pages 29–43, New York, NY, USA, 2003. ACM Press.

[8] Lukáš Hejtmánek and Luděk Matyska. Distributed Data Storage with Strong
Offline Access Support. In The Second International Multi-Conference on Com-
puting in the Global Information Technology Challanges for the Next Generation
of IT & C, pages 1–6. IEEE Computer Society Press, 2007.

[9] Lukáš Hejtmánek, Luděk Matyska, and Michal Procházka. Secure logistical
networking in virtual organizations. Technical Report 2/2007, CESNET, z.s.p.o,
February 2007.

[10] Iperf. http://dast.nlanr.net/Projects/Iperf.

[11] John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Dennis Geels,
Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westly Weimer,
Christopher Wells, and Ben Zhao. OceanStore: An Architecture for Global-
Scale Persistent Storage. SIGPLAN Not., 35(11):190–201, November 2000.

[12] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy:
A Read/Write Peer-to-Peer File System. SIGOPS Oper. Syst. Rev., 36(SI):31–
44, 2002.

[13] D.S. Parker, G.J. Popek, G. Rudisin, A. Stoughton, B.J. Walker, E. Walton, J.M.
Chow, D. Edwards, S. Kiser, and C. Kline. Detection of Mutual Inconsistency in
Distributed Systems. IEEE Transactions on Software Engineering, SE-9(3):240–
247, 1983.

[14] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like
systems. Software – Practice & Experience, 27(9):995–1012, September 1997.

[15] Mendel Rosenblum and John K. Ousterhout. The Design and Implementation
of a Log-Structured File System. ACM Transactions on Computer Systems,
10(1):26–52, 1992.

[16] Yasushi Saito and Marc Shapiro. Replication: Optimistic Approaches. Technical
Report HPL-2002-33, HP Laboratories Palo Alto, 2002.

[17] M. Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki, Ellen H.
Siegel, and David C. Steere. Coda: A highly available file system for a distributed
workstation environment. IEEE Transactions on Computers, 39(4):447–459,
1990.



Secure and Fault TolerantDistributed Frameworkwith Mobility Support 17

[18] Mahadev Satyanarayanan. Scalable, Secure, and Highly Available Distributed
File Access. IEEE Computer, 23(5):9–21, May 1990.

[19] Frank Schmuck and Roger Haskin. GPFS: A Shared-Disk File System for Large
Computing Clusters. In Proc. of the First Conference on File and Storage Tech-
nologies (FAST), pages 231–244, Berkeley, CA, USA, 2002. USENIX Associa-
tion.

[20] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and
D. Noveck. RFC 3530: Network File System (NFS) version 4 Protocol, April
2003. http://www.ietf.org/rfc/rfc3530.txt.

[21] C. A. Stein, Michael J. Tucker, and Margo I. Seltzer. Building a Reliable Mutable
File System on Peer-to-Peer Storage. In SRDS ’02: Proceedings of the 21st IEEE
Symposium on Reliable Distributed Systems (SRDS’02), page 324, Washington,
DC, USA, 2002. IEEE Computer Society.

[22] Lex Stein, Michael J. Tucker, and Margo I. Seltzer. Reliable and fault-tolerant
peer-to-peer block storage. Technical Report HU-TR-04-02, Harvard CS, 2002.

[23] Alan Tackett, Bobby Brown, Laurence Dawson, Santiago de Ledesma, Dim-
ple Kaul, Kelly McCaulley, and Suyra Pathak. QoS issues with the L-Store
distributed file system, 2006. Advanced Computint Center for Research and
Education, Vanderbilt University, Whitepaper.

[24] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems: Principles
and Paradigms. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[25] S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, and C. Maltzahn. Ceph: A
Scalable, High-Performance Distributed File System. In Proceedings of the 7th
Symposium on Operating Systems Design and Implementation (OSDI), pages
307–320. USENIX, 2006.

[26] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. Grid
resource management—CRUSH: controlled, scalable, decentralized placement
of replicated data. In SC ’06: Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, page 122, New York, NY, USA, 2006. ACM Press.

[27] Qin Xin, Ethan L. Miller, Thomas Schwarz, Darrell D. E. Long, Scott A. Brandt,
and Witold Litwin. Reliability mechanisms for very large storage systems. In
MSS ’03: Proceedings of the 20th IEEE/11th NASA Goddard Conference on
Mass Storage Systems and Technologies (MSS’03), page 146, Washington, DC,
USA, 2003. IEEE Computer Society.


