
Implementation of DXT Compression for UltraGrid

Ian Wesley-Smith, Miloš Liška, Petr Holub

CESNET Technical Report x/2008
2008–06–15

Abstract

�is report describes an implementation ofDXTcompression inUltraGrid, allowing for
low latency, high de�nition multi-party videoconferencing requiring only 250Mbps of
bandwidth.�is represents a substantial decrease compared to the uncompressed video
stream, which requires 1.5Gbps, while having a minimal impact on latency. �e DXT
implementation includes a new client-side display which, when using DXT compressed
data, takes full advantage of the graphics card, resulting in minimal CPU utilization.
�is report includes experimental evaluation of end-to-end latencies, CPU load, and
tra�c pro�les for both uncompressed and DXT-compressed video.

Contents

1 Introduction 2

2 Implementation 3
2.1 Sender . 3
2.2 Receiver . 3

3 Performance Evaluation 6
3.1 Results . 6

4 Conclusions 8

1

1 Introduction

An uncompressed high-de�nition (HD) video transmission creates an unparalleled exper-
ince for participants of collaborative environments, providing both high image quality and
low end to end latency of the transmission (considered in an end-to-end way, i.e., all the way
from the camera to the display screen). Utilization of such an approach has been demon-
strated by several teams around the world in recent years: �e UltraGrid system provided
by Pekins & Gharai [1, 2], a modi�ed version of UltraGrid by CESNET team [3, 4], iHDTV
systems [5], or the HDTV over IP project by NTT Laboratories [6]. Although, as noted ear-
lier, uncompressed HD video provides the best image quality and lowest latency, its high
bandwidth utilization, about 1.5Gbps, severely hinders deployment of systems utilizing it.

In order to facilitate adoption in non 10GbE environments, we have integrated low-
latencyDXTcompression [7–9] intoUltraGrid.�ere is a series ofDXTcompression schemes
named DXT1 through DXT5 [8], of which DXT1 provides the best compression ratio and
thus has been actually used in UltraGrid. It is based on color indexing, where each 4×4 pixel
block (so called texel) is converted into two 16 b colors1 (c1, c2) and a lookup table compris-
ing 16 color indices with 2 b per index. �e index points to one of the following four colors
then: (c1, 2⁄3c1 + 1⁄3c2, 1⁄3c1 + 2⁄3c2, c2). Choice of the colors (c1, c2) is up to the implemen-
tation and is an important factor for quality of resulting images. Discussion of alpha channel
handling has been omitted in the discussion of DXT as it is not used in UltraGrid. DXT
compression was selected for the following reasons:

▷ 6:1 bitrate reduction (by converting 4×4 pixel block with 24 b/pixel into 4×16 b struc-
ture; coincidentally, the same 6:1 ratio is also achieved when comparing the original
10 b 4:2:2 HD-SDI stream at 1.5Gbps to the resulting 8 b 4:4:4 stream at 250Mbps).

▷ acceptable image quality on natural scenes (computer-generated images with long �ne
gradients may display more signi�cant posterization).

▷ availability of an implementation in real-time [10] and for HD frame size and rate [14].

▷ availability of DXT texture decompression and rendering directly in graphics cards,
even in low-cost models.

While the DXT compression has signi�cant computational requirements, and thus re-
quires a powerful enough sender computer, the receiver can be a fairly low cost computer
equipped with a graphics card supporting DXT textures. �e resulting data streams can be
run over Gigabit Ethernet, which is now o�en available from LANs.

JPEG2000Experiment Implementation of JPEG2000was also attempted in order to achieve
a higher-quality compressed video, ideally with GPU support for both encoding and decod-
ing as JPEG2000 compression and decompression are fairly exhaustive processes when im-
plemented on a CPU only. �is, however, proved to be infeasible due to the high read-back
latency from the GPU using Cg [11] (and CUDA [12] only became available at the time of
development). An overview of the measured latency is shown in Figures 1 and 2, including
both component-wise latency and the overall latency of the whole process. �e measure-
ments were performed using a NVidia 7600GS (with both 9000-series driver and the new

1Each color uses 5 b for red, 6 b for green, and 5 b for blue, i.e., 16-bit RGB 5:6:5.

2

100.14.11 driver) and a NVidia 8800GTX (with the 100.14.11 driver only). �e results sug-
gest that NVidia 8800-series cards are much better suited for general purpose computing
compared to the older series, but still not usable for real-time compression using the Cg ap-
proach (this may signi�cantly improve with CUDA approach).

2 Implementation

�e implementation requires two parts: the sender, where compression of the incoming data
is done, and the receiver, where decompression happens as a part of the rendering process.
�e basic assumption is that the data will be sent to more than one receiver (be it for 1:N
distribution as in a virtual class, or full N:N collaboration where there are N− 1 receivers for
each sender) and thus the playback part has to be as a�ordable as possible (both in terms of re-
quired CPU capacity and availability of required hardware). �e sending part should also be
optimized, but it is less critical compared to the receiving part. Another critical requirement
is low end-to-end latency of the system, and as such the compression should introduce as lit-
tle additional latency as possible. With the advent of general purpose GPU computing [13],
we wanted to utilize the GPUs computational power to the maximum extent available at the
time of development.

2.1 Sender

We have opted to use the FastDXT library [14, 15], which performs parallel compression of
the data using CPUs. �is library has been developed for compressing 4K video and can
handle HD video in real time. It uses highly optimized code based on intrinsics, resulting in
e�cient code generation across various platforms.

�e UltraGrid sender handles acquiring the video through one of its capture interfaces
(DVS SDK for HDstation, Centaurus, Centaurus II and Centarus II LT cards on Linux, or
very �exible QuickTime interface that allows for using various underlying capture cards).
�e acquired video data is extrapolated from 4:2:2 with 10 b per component to 4:4:4 sampling
with 8 b per color component and then the DXT compression is performed using 3 threads
running in parallel. It should be noted, however, that to decrease latency and computational
requirements on the sender, the compressed image is still inYUVcolor spacewith conversion
being done on the receiver. For sending with Jumbo frames enabled, the sender machine
should have at least 4 cores (as 3 cores are completely busy with compression threads and
one remaining core handles the other work). Four cores are also needed in order to send
standard-sized 1500 B frames as the load increases only moderately, see Section 3.1.

2.2 Receiver

As noted above, we rely on DXT since its decompression through OpenGL has direct hard-
ware support on vast majority of modern GPUs. �erefore, an OpenGL front end has been
implemented for UltraGrid (the original implementation from [4] used only SDL front end
for so�ware-based rending). A�er decompressing the image, an OpenGL fragment shader
is applied to convert from YUV to RGB color space. As all image processing occurs on the
graphics card, the DXT OpenGL front end uses less resources than any other available front-
end for UltraGrid. �e OpenGL front end also supports scaling operation, so that the video
can be played back using any screen resolution up to 1920×1200.

3

OpenGL Latency

25625122 10242 12802 19202

Image size [px]

100
200

400

600

800

1000

1200

1400

La
te
nc
y
[m

s]

NVidia 7600 old driver
NVidia 7600
NVidia 8800

Texture Loading Latency

25625122 10242 12802 19202

Image size [px]

100
200

400

600

800

1000

1200

1400

La
te
nc
y
[m

s]

NVidia 7600 old driver
NVidia 7600
NVidia 8800

Discrete Wavelet Transform Latency

25625122 10242 12802 19202

Image size [px]

100
200

400

600

800

1000

1200

1400

La
te
nc
y
[m

s]

NVidia 7600 old driver
NVidia 7600
NVidia 8800

Figure 1: Latency measurements of discrete wavelet transform performed on a GPU.

4

Readback Latency

25625122 10242 12802 19202

Image size [px]

100
200

400

600

800

1000

1200

1400

La
te
nc
y
[m

s]

NVidia 7600 old driver
NVidia 7600
NVidia 8800

Total Latency

25625122 10242 12802 19202

Image size [px]

100
200

400

600

800

1000

1200

1400

La
te
nc
y
[m

s]

NVidia 7600 old driver
NVidia 7600
NVidia 8800

Figure 2: Latency measurements of discrete wavelet transform performed on a GPU.

5

�e implementation has been tested on various NVidia cards (7000 and 8000 series) and
it performed as expected.�e problemswere however whenwe tried to run theDXT receiver
on Mac Mini with built-in Intel GMA 950 graphics card as it seems there is no support for
OpenGL 2.0 on this GPU (OpenGL 1.4 is only supported). �e compilation of shader frag-
ment for color space conversion fails on this card probably because GLSL extensions are not
fully supported—this problem will be worked upon in the future.

3 Performance Evaluation

In order to analyze behavior of the system, we have performed measurements of end-to-end
latencies. �is measurement methodology uses the following setup: a generator computer is
used to display a time-changing pattern to analyze the latency on an attached LCD screen.
�e screen of the generator computer is captured by the SONY HVR-Z1E camera attached
to the sender computer using an analog to HD-SDI converter (AJA HD10A). �e data is
received by the receiver computer and displayed on an attached LCD screen. For all the mea-
surements, sender and receiver were connected directly back to back (without a switch) using
2meters of a single-mode �ber. Both generator screen and receiver screen were captured by a
still digital camera and the latency di�erence has been read out. �e same principle has been
used to carry out end-to-end latencymeasurements in [3].�is technical report also updates
results for uncompressed video shown is [3] as the implementation of both UltraGrid and
DVS SDK has improved since then.

�e Linux machines (both sender and receiver) for measuring latencies with Centaurus
and Centaurus II cards both with and without DXT compression were set up as follows:

▷ 2× processor AMD Opteron Dual Core 2.6GHz
▷ 2GB RAM
▷ 10GbE network interface card MyricomMyri-10GE (PCIe, i.e., PCI Express)
▷ Centaurus (PCI-X) or Centaurus II (PCIe) capture card

�e MacOS X machine which has been used again as both sender and receiver has been
con�gured as follows:

▷ Intel-based Mac Pro
▷ 2× Intel Xeon Quad Core 3GHz
▷ 4GB RAM
▷ 10GbE network interface card MyricomMyri-10GE (PCIe)
▷ Blackmagic Decklink HD Pro capture card (PCIe)

3.1 Results

Latency. Measurement results are summarized in Table 1. Error of the measurement is
given by refresh rate of the 60Hz LCD screen which is 16ms.

Sender load. Results indicate two positive results: (1) DXT compression has only a very
small impact on the latency and (2) latency has improved since publication of results in [3].
Also it is obvious that, in terms of latency, the newer and cheaper Centaurus II card performs
better than its predecessor.�is is likely due to the fact that it produces a lower computational
load on the system, and thus it performs signi�cantly better when DXT compression is oc-
curring (this may be attributed at least in part to its PCIe interface).

6

Con�guration Latency [ms]
Linux, Centaurus, no compression, Jumbo frames 90±8
Linux, Centaurus II, no compression, Jumbo frames 85±8
Linux, Centaurus, DXT compression, Jumbo frames 130±8
Linux, Centaurus II, DXT compression, Jumbo frames 95±8
MacOS X, DeckLink Pro HD, no compression, Jumbo frames 148±8
MacOS X, DeckLink Pro HD, DXT compression, Jumbo frames 178±8

Table 1: Latency evaluation results summary.

Con�guration CPU load
Linux, no compression, Jumbo frames 26 %
Linux, DXT compression, Jumbo frames 332 %
Linux, DXT compression, 1500B frames 350 %
MacOS X, no compression, Jumbo frames 46 %
MacOS X, DXT compression, Jumbo frames 324 %
MacOS X, DXT compression, 1500B frames 350 %

Table 2: Sender CPU load evaluation results summary.

CPU load was measured for both Linux and Mac Pro machine senders sending uncom-
pressed and DXT compressed HD video. Results are summarized in Table 2.

�e CPU load is measured in total for all CPU cores. 100% CPU load in this case means
either one fully loaded core or equivalent load distributed among number of cores. In case
of sending DXT compressed streams the DXT compression was fully loading three cores on
both Linux and Mac Pro sender. Such a requirement was easily matched with quad-core
(Linux sender) and octo-core (Mac Pro sender) setups.

Receiver load. CPU loads on the receiving machines and di�erent HD video streams are
given in Table 3. An expected observation is a low CPU load imposed by receiving and
displaying DXT compressed streams. For the Linux receiver, the CPU load was only 17% of
an Opteron 245 core when using DXT compressed stream with Jumbo frames enabled.

Con�guration CPU load
Linux, no compression, Jumbo frames 123 %
Linux, DXT compression, Jumbo frames 17 %
Linux, DXT compression, 1500B frames 24 %
MacOS X, no compression, Jumbo frames 160 %
MacOS X, DXT compression, Jumbo frames 9 %
MacOS X, DXT compression, 1500B frames 29 %

Table 3: Receiver CPU load evaluation results summary.

7

DXT compressed video, 1500B frames, GbE

0 0.05 0.10 0.15 0.20 0.25 0.30

Time [s]

0

20

40

60

80

100

120
Pa
ck
et
sp

er
1m

s

Figure 3: Tra�c pro�les for various UltraGrid setups.

Tra�c pro�les. UltraGrid is known for generating bursty tra�c in order to deliver video
frames to the destination as fast as possible [3]. We have compared tra�c pro�les for DXT
compressed video with both standard sized and Jumbo frames and uncompressed video with
Jumbo frames. �e pro�les were captured using tcpdump utility on the Mac Pro sender
machine. Only �rst 68 B of each packet were captured in order to minimize performance
impact of the measurement itself.

�e results are shown in Figures 3, 4, and 5.�e raw packet arrival times were aggregated
into 1ms time slots and which are used to plot the pro�les. Most extreme bursts in terms of
packet count are generated when transmitting DXT compressed video with standard-sized
frames. Both compressed and uncompressed streams with Jumbo frames generate similar
packet rates, but for compressed video the burst length is signi�cantly shorter.

4 Conclusions

In this report, we describe theDXTcompression implementation forUltraGrid, a low-latency
high-de�nition collaborative system. �e OpenGL front end for UltraGrid has been imple-
mented, and, more importantly, this allowed for real-time image compression utilizing a
modi�ed version of FastDXT library and decompression using the OpenGL front end. �is
compressed version of UltraGrid required only 250Mbps of bandwidth, 20% of CPU utiliza-
tion during data receiving on anOpteron 245, and provided quite usable quality and stability.
Although the compressions process is computationally intensive, it is a highly parallel task,
and results inminimal latency impact when compared to other compression techniques.�e
end-to-end latency of the uncompressed HD video was signi�cantly lower compared to the
results reported in [3], which can be attributed to optimization of the so�ware since 2005
and utilization of the new DVS SDK.

8

DXT compressed video, 1500B frames, 10GbE

0 0.05 0.10 0.15 0.20 0.25 0.30

Time [s]

0

20

40

60

80

100

120

Pa
ck
et
sp

er
1m

s

DXT compressed video, 8500B frames, GbE

0 0.05 0.10 0.15 0.20 0.25 0.30

Time [s]

0

20

40

60

80

100

120

Pa
ck
et
sp

er
1m

s

Figure 4: Tra�c pro�les for various UltraGrid setups.

9

DXT compressed video, 8500B frames, 10GbE

0 0.05 0.10 0.15 0.20 0.25 0.30

Time [s]

0

20

40

60

80

100

120

Pa
ck
et
sp

er
1m

s

Uncompressed video, 8500B frames, 10GbE

0 0.05 0.10 0.15 0.20 0.25 0.30

Time [s]

0

20

40

60

80

100

120

Pa
ck
et
sp

er
1m

s

Figure 5: Tra�c pro�les for various UltraGrid setups.

10

�e whole system was demonstrated at the Global Lambda Infrastructure Forum (GLIF)
workshop in Prague (September 2007) as part of theCoUniverse demonstration organized by
Masaryk University and during the Center for Computation and Technology demo at Super
Computing 2007 (November 2007).

As for the future work, we would like to focusmore on real-time compression techniques
using GPUs, namely on the new generation of NVidia GPUs that will allow us to use the
CUDA programming model. As those newer cards are designed with general purpose calcu-
lations in mind, we expect much better performance in terms of read-back latency.

References

[1] Colin Perkins, LadanGharai, TomLehman andAllisonMankin, “Experiments with Delivery of
HDTV over IP Networks”, Proceedings of the 12th International Packet VideoWorkshop, Pitts-
burgh, PA, USA, April 2002. http://ultragrid.east.isi.edu/publications/pv2002.
pdf

[2] UltraGrid—A High De�nition Collaboratory, http://ultragrid.east.isi.edu/

[3] P. Holub, L. Matyska, M. Liška, L. Hejtmánek, J. Denemark, T. Rebok, A. Hutanu, R. Paruchuri,
J. Radil, and E. Hladká, High-de�nition multimedia for multiparty lowlatency interactive com-
munication, Future Generation Computer Systems 22 (8) (2006) 856–861.

[4] UltraGrid by Laboratory of Advanced Networking Technologies (ANTLab), https://www.
sitola.cz/igrid/index.php/UltraGrid

[5] iHDTV project, ResearchChannel, http://ihdtv.sourceforge.net/

[6] K. Harada, T. Kawano, K. Zaima, S. Hatta, and S. Meno. Uncompressed HDTV over IP Trans-
mission System usingUltra-high-speed IP Streaming Technology. NTTTechnical Review, 2003.
http://www.ntt.co.jp/tr/0304/files/ntr200304084.pdf

[7] P. Brown, S3 Texture Compression, NVidia Corporation, November 2001. http://oss.sgi.
com/projects/ogl-sample/registry/EXT/texture_compression_s3tc.txt

[8] S3 Texture Compression, http://en.wikipedia.org/wiki/Texture_compression

[9] Legacy:DXT, http://wiki.beyondunreal.com/Legacy:DXT

[10] J.M.P. van Waveren, Real-Time DXT Compression, Id So�ware, Inc., 2006. http://
cache-www.intel.com/cd/00/00/32/43/324337_324337.pdf

[11] NVIDIA Cg Toolkit, http://developer.nvidia.com/page/cg_main.html

[12] NVIDIA CUDA, http://www.nvidia.com/cuda

[13] GPGPU - General-Purpose computation on GPUs, http://www.gpgpu.org/

[14] FastDXT Library, http://www.evl.uic.edu/cavern/fastdxt/

[15] L. Renambot, B. Jeong, and J. Leigh. Real-Time Compression For High-Resolution Content.
Proceedings of the Access Grid Retreat 2007, Chicago, IL http://www.evl.uic.edu/files/
pdf/ag2007-renambot.pdf

11

http://ultragrid.east.isi.edu/publications/pv2002.pdf
http://ultragrid.east.isi.edu/publications/pv2002.pdf
http://ultragrid.east.isi.edu/
https://www.sitola.cz/igrid/index.php/UltraGrid
https://www.sitola.cz/igrid/index.php/UltraGrid
http://ihdtv.sourceforge.net/
http://www.ntt.co.jp/tr/0304/files/ntr200304084.pdf
http://oss.sgi.com/projects/ogl-sample/registry/EXT/texture_compression_s3tc.txt
http://oss.sgi.com/projects/ogl-sample/registry/EXT/texture_compression_s3tc.txt
http://en.wikipedia.org/wiki/Texture_compression
http://wiki.beyondunreal.com/Legacy:DXT
http://cache-www.intel.com/cd/00/00/32/43/324337_324337.pdf
http://cache-www.intel.com/cd/00/00/32/43/324337_324337.pdf
http://developer.nvidia.com/page/cg_main.html
http://www.nvidia.com/cuda
http://www.gpgpu.org/
http://www.evl.uic.edu/cavern/fastdxt/
http://www.evl.uic.edu/files/pdf/ag2007-renambot.pdf
http://www.evl.uic.edu/files/pdf/ag2007-renambot.pdf

	Introduction
	Implementation
	Sender
	Receiver

	Performance Evaluation
	Results

	Conclusions

