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Abstract— In this paper, we propose a distributed data
storage framework that supports unrestricted offline access.
The system does not explicitly distinguish between connected
and disconnected states. Its design is based on a lock-free
distributed framework that avoids update conflicts through
file versioning. We propose an algorithm for replica synchro-
nization. The feasibility of this framework is confirmed by a
proof-of-concept implementation. We also demonstrate that
the proposed lock-free replica synchronization algorithm
scales well. A future work will include also direct support
for non-versioned files.

Index Terms— lock-free distributed replication, disconnected
operations, file versioning, conflict avoidance

I. I NTRODUCTION

As the mobility is becoming a more and more important
aspect of work pattern of contemporary users, the ways
in which data is processed in a distributed system that
supports mobility are gaining more practical interest.
When considering mobility, we expect mobile clients
to be connected to the network from different places.
However, as the network is not yet omnipresent and does
have very differing properties at different places, we have
to consider situations when network is not available—
users have to work in a disconnected mode—or network
has very limited throughput or very high latency (e.g.,
when using the GPRS or satellite links). The distributed
data storage must be able to support usual work patterns
even in such cases, hiding the actual network quality (or
even existence) from the users as much as possible.

The primary goal of our work is to present a distributed
data storage system which does not distinguish between
connected and disconnected states and most operations
are done only in one (the disconnected) state with ex-
plicit synchronization protocols run after re-connect. Our
secondary goal is to present a system which does not
need to use locking and we demonstrate that this is the
needed property to fulfill our primary goal. We propose
fast lock-free synchronization algorithm and we avoid
update conflicts using file versioning.

Ficus [1] and Coda [2] are prominent examples of
systems that introduced the so called disconnected op-
erations. The Coda system distinguishes whether the
client is connected or disconnected. The Ficus system
supports primarily disconnected mode [3] but uses com-
plex synchronization algorithms and does not support file
versioning. File versioning is popular in the programming

and text/file editing fields and is usually supported at the
application level through tools like CVS [4], SVN [5],
or GIT [6]. Recently, file versioning has begun to be
popular also in the field of computer graphics, with, e.g.,
Adobe Version Cue1 which is an application-level file
versioning tool. These systems usually support discon-
nected operations (e.g., editing a file independently and
making explicit synchronization with the server) and their
supported modes of operations are very similar to the use
of file systems in disconnected state.

The proposed architecture forms a part of a distributed
storage framework that is usable as the Storage Elements
that has been presented in Grid environments [7]. If a
computing job fails, it is usually due to unavailability
of the Storage Elements thus the storage systems with
offline access support are most suitable here. Additionally,
storage systems that incorporate file versioning allow
easier resuming of failed jobs that work with the Storage
Elements as particular file versions can be found in some
defined state that is coherent for all the computing nodes.

The rest of this paper is organized as follows. In
Section II, we discuss problems related to data replication,
file versioning, and problems related to offline support.
Architecture of the proposed framework is presented in
Section III. This is followed, in Section IV, by the
information about a prototype implementation and exper-
imental results. Section V summarizes related work and
Section VI gives concluding remarks and work summary.

II. D ISTRIBUTED SYSTEMS

In this section, we discuss some common problems
related to distributed storage systems with replication
and offline support and concurrent versions system with
replication. We use a distributed system model with a set
of participants. Each participant can communicate directly
with all the others. Each participant is either running or
down. We allow services and data to be replicated among
participants, i.e., services or data are redundantly hosted
by multiple participants.

To distinguish individual objects moving in a dis-
tributed system, some global unique identification is
needed. Three different approaches are usually used for
such a purpose: centralized service, peer-to-peer, and

1http://www.adobe.com/products/creativesuite/
versioncue.html



standalone. The first two approaches rely on availability
of either the central service or the peers at the moment
of issuing the unique identifier. This requirement is not
valid for our situation when new object can be created
in the disconnected state. Therefore, only the standalone
approach is usable for offline clients, as it does not need
to contact any other participant nor third party service.

As a disconnected client re-connects to the network,
some synchronization must happen between the client and
the distributed system. Our synchronization algorithm is
based on a modification of the well knownTwo-Phase
Commit Protocol[8], that is therefore described below.
We have a set of participants that can commit or abort a
transaction. If all the participants commit then the result is
to commit. If any of the participants aborts then the result
is to abort. Two-phase commit protocol (2PC) decides
whether to abort or to commit. The 2PC consists of two
parts. The first, message “prepare to commit” is broad-
casted to all participants by one of the participants. If any
of the participants does not answer until certain timeout
(broadcast message is lost or a participant is down)
then the result is abort. After collecting answers with
commit or abort messages, the second part is started by
broadcasting the result. The second broadcast is supposed
to be a reliable broadcast. If initiator of the transaction
does not receive acknowledgement of the second phase
from any of the participants than it is up to the initiator
to retransmit the request of the second phase.

Beside 2PC, we utilize the well know leader election
algorithm [9] that we describe in the following, too. The
leader election algorithm is concerned with bringing about
a single leader so that everyone knows who is the leader.
After each run, a single leader must be selected even if
the protocol is initiated by multiple participants. There
exist many variants of this algorithm [9]. We usewave
leader electionvariant. Each participant is given a label
so that all labels are distinct and comparable. When any
participant sends any message then his label is included
in the message. When a participant (initiator) decides that
a new leader needs to be elected than the participant
initiates voting. It means that a participant sends a mes-
sage “I am the leader” to all other participants (election
wave). Each participant replies to the initiator with an
acknowledgement. The acknowledgement is positive if the
participant has not yet received any message “I am the
leader” or if the participant received the message “I am
the leader” from the initiator with lower label; otherwise
the acknowledgement is negative. Initiator that receives
no negative acknowledgement and does not sent positive
acknowledgement to any other initiator, is considered to
be a leader. It is easy to see that participant with the
highest label always can be the leader. This algorithm
assumes that no messages are lost.

A. Distributed Data Systems and Replication

Large scale distributed systems are prone to failures. If
we are given a distributed system consisting of hundreds
or even thousands of elements, it is almost certain that

some elements are non-operational. If we are to secure
a reliable service, possible way out lies in replication.
We can replicate elements or services in the case of
data systems, we replicate storage servers or orthogonally
we can replicate stored data. We use data replication in
approach chosen for this work.

Data replication strategies [10] can be divided into
two groups. The first, pessimistic replication strategy
blocks update operations until the update is spread over
all replicas. The second, optimistic replication strategy
does not block update operations and spreading is not
synchronous with update. Consequently, the pessimistic
replication strategy can have performance and data avail-
ability problems due to blocking operations but it guar-
antees coherency of data. On the contrary, the optimistic
replication strategy does not guarantee coherency of data
immediately after update operation but it can be faster
than the pessimistic approach and provides highly avail-
able data.

B. Distributed Storage with Offline Access Support

We adopt a model which consists of online servers and
possibly offline clients. The servers are all interconnected,
the clients can connect to and disconnect from the net-
work at any time. The disconnected clients use read-ahead
cache to be able to read data and write back cache to
store updated data. Write back cache is synchronized with
servers after the transition from disconnected to connected
state. Write back cache can serve as prefetch cache in the
case of reading previously stored data.

The systems that support parallel read/write access to
data must deal with two kind of conflicts: update and
name conflicts. These conflicts can be either avoided or
resolved after they occur. In the following, we describe
these conflicts with their consequences in the systems
with offline access support.

1) Update Conflicts:We denote a situation, when two
or more distinct clients want to update the same data,
as anupdate conflict. If all the clients are online then the
update conflict is usually solved by a last-writer-wins rule
or the system avoids update conflicts at all by using data
locks.

If the client has updated data while being disconnected,
the update conflicts may occur after the transition to
the connected state. In such a case, the last-writer-wins
rule is ambiguous because the time stamp bound to the
update relies on real-time clock of the client. However,
it is infeasible to synchronize real-time clock of all par-
ticipants in distributed environment with offline support.
Moreover, the updates are committed after transition from
disconnected to connected state. The time ordering of
commits does not need to be the same as the time ordering
of updates. For usage of distributed data locking, the client
must not be faulty (including disconnected state) or the
client must periodically refresh soft-state locks. If we do
not impose upper bounds on duration of the disconnected
state then the soft-state locks cannot be used; otherwise



we have problems with clients that are disconnected for
too long or the soft-state locks being prematurely freed.

2) Name Conflicts:Traditional file systems use a full
file name (i.e., a file name together with the path to it)
as an unique and immutable identification of the file.
Consequently, these file systems prohibit the creation of
two or more identical full file names for different files.

After introducing disconnected state, the system is
unable to prevent creation of multiple identical full file
names because full file names are generated by the
clients. We are unable to check full file names created in
disconnected state. The name conflicts may occur after
transition from disconnected to connected state if we
allow to create and rename files in the disconnected state.
Moreover, file creation or file renaming are synchronous
operations expecting to get the result of the operation
immediately—which is unknown until transition to the
connected state.

C. Concurrent Versions System with Replication

We use a model of a file system with versioned files.
Besides traditional directory structure, we bind a version
number to every file. A single file may have several
distinct versions with each file version being immutable.
Update made to a particular file version results in a new
file version that is further immutable. We extend this
model using replication: we use a file with all its versions
as an independent replication unit and updates may be
performed on any of the replicas.

File replication of immutable files does not pose prob-
lem with conflicting updates because every file is unique
and once written, it may receive no updates. However, the
update conflicts return as a version conflict if we introduce
file versioning together with immutable files. Replication
algorithm must spread new file versions across replicas
and spreading file versions may result in version conflict.

More precisely, denote a setF = {f1, . . . , fn} of
versions of a particular file that are spread over all
replicas. Assume that the versionfn+1 is created on the
replicaR1 and the versionf ′

n+1 is created on the replica
R2. Both fn+1 and f ′

n+1 are versions of the same file
with the same version number but they may have different
content. We denote such a situation as theversion conflict.

III. A RCHITECTURE DESIGN

The model of our distributed file system consists of
interconnected storage servers and clients that connect
and disconnect arbitrarily. We do not distinguish between
connected and disconnected clients. As we discussed in
the previous sections, disconnected clients should not use
data locking and thus our model avoids data locking
completely. The disconnected clients use prefetch cache
to be able to read data and write back cache to store
updated data. Write back cache is synchronized to servers
after the transition from disconnected to connected state.
Prefetch and write back cache stores data blocks instead
of whole files. Each file consists of two parts: metadata
and data. Both data and metadata are stored on the

storage servers. Data is stored in blocks of variable length,
once stored, each data block is further immutable. The
metadata resembles standard UNIX I-Node, as it contains
references to the particular data blocks, their offsets in the
file and their lengths. The metadata supports replication
of data blocks, i.e., particular offset may be referenced
by multiple data blocks. The metadata is maintained
in a directory structure. Files may exist in several file
versions. Every file version is further immutable and an
update of the file creates a new file version. We adopt
the so called open-close semantics where metadata of
a particular file is published to network after the file
closing. Consequently, a new file version us created after
the file is closed. Every file version is given an UUID
(Universally Unique IDentifier, represented by 16 bytes
long number) [11] at the time of version creation. Al-
gorithm used for UUID generation gives globally unique
identifiers with high probability. A file with all its versions
forms an independent replication unit; every file can be
replicated. Replication model embodies multiple master
(peer to peer) approach, i.e., no replica has master role,
and all replicas are read-write accessible. Each replica is
given an UUID and knows all other replicas. Replication
is performed by a storage server.

A. Update Conflicts

As we presented in Section II-B.1, systems with offline
support may suffer from update conflicts. Our model
is based on immutable files and updates based on file
versioning. As immutable file cannot be changed, we
completely avoid update conflicts.

B. Name Conflicts

In Section II-B.2, we discussed that systems with of-
fline support may have problems with name conflicts. As
we already mentioned, the file creation and file renaming
are synchronous operations expecting result status to be
returned synchronously but the result status is unknown
till transition to the connected state. We use optimistic
approach which means that if a new file name is not
conflicting with cached file names then it is not globally
conflicting. Using this approach, we keep synchronous
nature of creating and renaming operations but we do not
completely avoid name conflicts. If a conflict occurs after
transition to the connected state, we change the conflicting
name. E.g., let us assume that offline client creates a
file file.1 . After transition to the connected mode, the
metadata of the filefile.1 is stored on metadata man-
ager but let us assume that there already exists a file of the
same name. In such a case, filefile.1 submitted by the
client is renamed tofile.1#1 . Consequently, the client
may not use file names as immutable identifiers because
the system may change the file names without notifying
all the users. In our example, the client may not use
file.1 for the file identification because it was changed
to file.1#1 in background. We resolve such situation
by binding globally unique identifier (UUID) with each



file (and its particular version) using which the user may
access file directly without specifying the path and the
file name. E.g., we bind the UUIDccb8c47c-709c-
40a9-906e-8383aacef173 with file.1#1 . Using
this identifier, the file is always accessible regardless of its
actual name. The user can always access the file using the
file “name” ?uuid=ccb8c47c-709c-40a9-906e-
8383aacef173 . However, using UUID for accessing
files is not user friendly and thus we support the use
of ordinary file names for accessing files for the most
cases. In addition, we presentcheckpointswhich are
abstract guarantees on immutability of the file names.
We represent the checkpoints as natural numbers bound
with every file and initially set to zero. If a checkpoint
of any file is non-zero then we guarantee that file name
(including file version) is fixed and will not be changed
by the system.

C. Replication

Using our model, the replication is done at two distinct
levels: data replication and metadata replication. For data
replication, we can easily adopt optimistic replication
strategy because our model assumes that stored data
blocks are immutable. Consequently, no update conflicts
may occur. We allow updates of immutable files using
file versioning. Replication of versioned files does not
pose update conflicts as versioned files are immutable.
However, version conflicts as discussed in Section II-C
may occur. We solve this problem by the replica syn-
chronization algorithm proposed in the following section.

D. Replica Synchronization Algorithm

Our replica synchronization algorithm is based on the
well known 2PC algorithm and the wave leader election
algorithm (both introduced in Section II). First, a leader
is elected using the leader election algorithm and then the
leader performs synchronization using the 2PC algorithm.
To optimize our algorithm, we compound 2PC protocol
messages into election messages as described below. More
detailed description together with the proof of correctness
can be found in [12].

A single versioned file with all its versions is replicated
independently of all other files, therefore we can use
abstraction of a single versioned file. Further, we suppose
that each file version is given system generated name
(UUID) which is globally unique. Using this UUID, we
can distinguish file versions albeit having different version
but having the same content (thus they also should have
the same version number).

For a versioned filef , we denote a setRf =
{R1, . . . , Rn} as the set of replicas that store the ver-
sioned filef . A single versioned file is an independent
replication unit and a replication of a single versioned file
does not depend on other versioned files. We denote file
versions of a single versioned file asf : {1, . . . ,m}. We
denoteRif : {1, . . . , p} as a set of file versions that are
stored on a replicaRi. The setRi

f : {1, . . . , p} does not

always contain all the file versions which is a consequence
of asynchronous version synchronization.

We define thatRi
f : k = Rj

f : k if and only if
the file versionRi

f : k has the same UUID as the file
versionRj f : k. We define thatRif : {1, . . . , n} = Rj f :
{1, . . . , n} if and only if for all k ∈ {1, . . . , n} it holds
Ri

f : k = Rj
f : k. We define aCheckpoint ∈ N0 such

that for all i, j it holds Ri
f : {1, . . . ,Checkpoint} =

Rj
f : {1, . . . ,Checkpoint}. Checkpoint ismaximal if

there is no suchC > Checkpoint for which holds that
∀i, j Rif : {1, . . . , C} = Rj f : {1, . . . , C}. In the
following text, Checkpoint denotes maximal checkpoint.

We define two operations that are requested by the
client and performed by the replica. We also denote
ancestor functionπ(vi

j), this ancestor function is used to
track history of particular file version (i.e., for each file
version, we can easily see its ancestors).

1) Create(Ri)—creates initial versionRif : 1 of a
file on a replicaRi. The file name is automatically
changed if initial versionRi

f : 1 already exists.
We defineπ(Ri

f : 1) = nil.
2) Update(Ri

f : j)—creates a new file version de-
rived from a single file of versionRif : j on replica
Ri. OperationUpdate(Rif : j) on non-existing
versionRi

f : j fails.
We defineπ(Update(Ri

f : j)) = Ri
f : j.

The setRi
f is built during synchronization or using

operationsCreate() andUpdate(). The setRi
f forms a

tree with the rootRi
f : 1 using ancestor functionπ().

When we want to synchronize a versioned file, we
run replica synchronization algorithm. Algorithm is not
required to start immediately afterCreate() andUpdate()
operations but we start it immediately to spread updates as
fast as possible. First, we elect only a leader that proceeds
with synchronization and then we run the two-phase
synchronization. Leader election is necessary to ensure
that one instance of the synchronization algorithm is only
running while synchronizing a single file. We allow to
run multiple instances of synchronization algorithm for
different files (not a different version but a file with a
different name).

The traditional 2PC algorithm aborts if one of the
participants is down (non-operational) thus all partici-
pants must be operational for 2PC algorithm to proceed.
Similarly, leader election algorithm supposes that all
communication channels are reliable. These properties
are usually not met in real world. Therefore, we have
modified leader election algorithm to work even with
lossy channels. We have also modified 2PC algorithm
to work with non-operational participants. As we use
only leader election to elect participant that is allowed to
proceed the synchronization algorithm, we do not require
that all participants know who the leader is, they only
must not be able to became the concurrent leader.

a) Leader election modification:We have a set of
participants, each participant is labeled, all the labels are
distinct and comparable. We can use, e.g., UUIDs for
the labels. Each participant knows all other participants.



Whole leader election algorithm is related to a single file
and for any different file (a file with different name) an-
other instance of leader election algorithm may be running
and elect possible different leader. Initiator (A) of election
spreads a message “I am the leader” (voting message).
The voting message contains identification of the initiator
and time limit within which the voting message is valid.
When a participant receives a voting message then there
exist several possible scenarios:

• A participant has not yet received any message in this
voting or the received message is not valid any more
(due to the time limit). In this case, the participant
replies “True”.

• A participant has already received message from ini-
tiator with higher label. In this case, the participant
replies “Cancel”.

• A participant has already received message from an
initiator (B) with a lower label. In this case, the
participant sends revocation message to the initia-
tor (B). The initiator (B) decides whether he resigns
or not and replies “True” or ”Cancel”, resp. The
participant forwards the reply from the initiator (B)
to the initiator (A).

We allow some participants to be crashed or discon-
nected from a network. Such participants do not reply to a
voting message. Initiator that has acquired “True” replies
from majority of participants and no “Cancel” reply is
the leader. Majority means strictly more than a half of
all participants (we remind that each participant knows
all other participants). It is easy to see that only one
participant is able to acquire majority of “True” replies.
Voting is finished when an initiator collects replies from
all running participants. When the initiator does not want
to be the leader any more—typically after performing
synchronization algorithm—he sends his resignation to
all participants. When participant has given “True” reply
to any initiator then the participant does not start voting
until she receives resignation of the leader or time limit
bound with voting message expires (regarding a single
file).

If the elected leader crashes during leader election then
his voting messages eventually expire and another leader
election may be started. In such case, there is no leader
until next leader election. This means that in this case,
our synchronization algorithm is postponed until the next
leader election.

b) Two-phase Commit modification:We bind time-
out with any message sent using this algorithm. If par-
ticipant does not reply within this timeout then it is
considered to be non-operational. Our modification of
2PC is based on majority approach. If initiator of 2PC
collects no “Abort” reply and the “Commit” reply from
strictly more than a half of all participants then the
result is to commit, otherwise the result is to abort. We
require majority here to be able to do global agreement
which cannot differ from agreement of a small group of
separated participants that were also allowed to proceed

2PC. It is guaranteed that there can exist only one majority
group.

At the beginning, the synchronization algorithm checks
whether another instance of synchronization is running on
the same replica synchronizing the same file. If another
instance is detected than after theUpdate() operation,
the new instance of synchronization is terminated and
after theCreate() operation, the new instance renames the
name of versioned file and starts again. Synchronization
algorithm continues in two parts: (1) leader is elected and
the first phase 2PC synchronization is done, (2) synchro-
nization is performed if leader election was successful and
then the leader sends her resignation to all participants.
Resignation is sent even in case of unsuccessful leader
election to release votes. Participant agrees to resign to
be the leader only if he performs phase one of 2PC.
If participant performs phase two of 2PC then he must
refuse to resign. Our proposed synchronization algorithm
has two slightly different separate parts. One part of the
algorithm is run after theCreate() operation and the other
part is run after theUpdate() operation. We describe both
parts separately.

Goal of the synchronization algorithm after the
Create() operation is to spread newly created version
across all replicas. Name collision may occur if initial file
version already exists on any replica. In such a case, the
newly created file must be renamed. The synchronization
algorithm has two parts: (1) election wave together with
verifying that file version does not exist on any of replicas
and “locking”2 the replicas so that file of this name cannot
be created, (2) file distribution and “lock” release.

1) Coordinator (A) verifies whether the given file name
does not locally exist and it atomically locks the
local replica so that the given file name cannot
be created any more. Than it sends election wave
together withCreateRequestto all other replicas.
If any replica refuses to lock (due to the already
existing lock or the given file already exists), the co-
ordinator renames the file and restarts the synchro-
nization algorithm. If the coordinator has collected
majority of replies from election wave and has
received no cancel reply then it proceeds to phase
2 of the synchronization algorithm. Otherwise, it
releases all the locks, renames the file and restarts
the synchronization algorithm.
A replica that receives multipleCreateRequests(let
us suppose that anotherCreateRequestis from a
coordinator (B)), behaves as follows: if an UUID
of a coordinator (A) is lower then the UUID of
the coordinator (B) then the replica repliesCancel;
if the UUID of the coordinator (A) is higher then
the UUID of the coordinator (B) then the replica
asks the coordinator (B) whether its lock can be
overridden. If the lock cannot be overridden then the
replica repliesCancel. The coordinator (B) allows

2The term “locking” means that a replica is only “locked” to prevent
concurrent synchronization.



lock overriding if it is in phase 1; otherwise it denies
lock overriding.

2) At the beginning of phase 2, coordinator checks
whether any replica has requested him to release
lock, if so then it releases the lock and restarts the
synchronization algorithm in phase 1. Coordinator
spreads the newly created file between replicas
and releases locks. It may happen that spread file
already exists on some replica. This can be only
unsynchronized file as a product of Create synchro-
nization algorithm. In this case, the already existing
file on target replica is renamed to non-conflicting
name. The non-conflicting name is non-conflicting
only within particular replica. It is not necessarily
globally non-conflicting. Renaming operation con-
verges as each name conflict means that one con-
current run of renaming operation has succeeded.
The rename operation starts another instance of
synchronization algorithm using the different file
name.

Goal of the synchronization algorithm after the
Update() operation is to synchronize file versions. In the
case of concurrent coordinators, the leader coordinator
proceeds and the others terminate. The synchronization
algorithm has two parts: (1) election wave together with
snap-shooting replicas with “locks” and (2) a synchroniza-
tion and “lock” releasing. We assume that coordinator is
running from replicaRa.

1) Coordinator (Ra) checks whether another coordina-
tor has not already locked this replica, if so then
it terminates. In phase 1, the coordinator sends
election wave together withObtainUpdateSetre-
quest. This request returns for allRi ∈ RF sets
Bi = Rif : {Checkpoint + 1, . . . , n}, i.e., Bi

contains all file versions with a version number
higher thenCheckpoint . If any of replicas has
replied Cancel then it means that another instance
of synchronization algorithm is running and the
coordinator releases all its locks and terminates.
A replica that receives multipleObtainUpdateSet
(let us suppose that anotherObtainUpdateSetis
from a coordinator (Rb)), behaves as follows: if
an UUID of a coordinator (Ra) is lower then the
UUID of the coordinator (Rb) then the replica
repliesCancel; if the UUID of the coordinator (Ra)
is higher then the UUID of the coordinator (Rb)
then the replica asks the coordinator (Rb) whether
its lock can be overridden. If the lock cannot be
overridden then the replica repliesCancel. The
coordinator (B) allows lock overriding if it is in
phase 1; otherwise it denies lock overriding.

2) If coordinator has collected replies from the major-
ity of replicas and none isCancelthen it proceeds to
phase 2. At the beginning, the coordinator checks
whether any replica has requested him to release
lock, if so it releases the lock and terminates. The
coordinator (running on the replicaRj) creates a
setf : {Checkpoint +1, . . . , n} by merging all the

setsBi (see the Figure 1). All file versions which
parents that are not already synchronized nor are
in the setBi, are omitted from merging. The set
f : {Checkpoint + 1, . . . , n} is distributed to all
replicas. If distribution has succeeded to the ma-
jority of replicas then the coordinator sets the new
Checkpoint to all replicas. All file versions that are
not present in the setf : {Checkpoint + 1, . . . , n}
are given a new version higher then theCheckpoint .

1 proc Merge(Checkpoint , B1, . . . , Bn)
2 B := B1 ∪B2 ∪ . . . ∪Bn

3 B′ := ∅
4 V ′ := ∅
5 x := Checkpoint + 1
6 foreach Ri

f : j ∈ B do
7 if ∃Rk

f : l ∈ B′ | Ri
f : j

.= Rk
f : l

8 then
9 foreach v such thatπ(v) = Rif : j do

10 π(v) := Rk
f : l

11 od
12 else
13 B′ := B′ ∪ {Ri

f : j}
14 f : x := Rif : j
15 V := V ∪ f : x
16 x := x + 1
17 fi
18 od
19 Checkpoint := x
20 return(V )
21 end

Figure 1. Merge operation. We defineRi
f : j

.
= Rk

f : l iff the file
versionRi

f : j has the same UUID as the file versionRk
f : l.

When a crashed replicaRi is operational again then
it obtains currentCheckpoint. Then it renames all unsyn-
chronized file versions to be beyond the current global
Checkpoint. This step is required because unsynchronized
versions below theCheckpointwill be overwritten in the
next step. In the following step, the crashed replica fetches
and merges file versions that are missing between the last
synchronized version and the global checkpoint. After
this operation, it may happen that the setRi

f contains
Ri

f : j and there existsRi
f : k such thatk > j

and theRif : j has the same UUID as theRif : k.
Then theRif : k is removed from the setRif . (I.e.,
the file versions in the setRi

f have distinct UUIDs, the
file versions with duplicate UUIDs are removed.) This
case is a result of a crashed replica that has contained
unsynchronized file version which has been synchronized
by other replicas meanwhile. We remind that if two files
possess the same UUID then through this property the
files have been marked by client as the same. At this point,
the setRi

f contains only items with different UUIDs.
And finally, it starts the synchronization algorithm. This
procedure is required because the crashed replica could
assign new version numbers to already synchronized (by
other online replicas) file versions. As we have mentioned,



once synchronized file version may not change its version
number.

When a coordinator of the synchronization algorithm
crashes then her locks eventually expires and another
instance of the synchronization algorithm may run. It
could happen that an update synchronized by this crashed
coordinator was the very last and no further update will
occur. It means that the last update will not be synchro-
nized. To solve this problem, each replica periodically
search its unsynchronized file versions and starts the
synchronization algorithm.

IV. PROTOTYPEIMPLEMENTATION

Our proof-of-concept implementation splits data stor-
age into two independent parts: data and metadata. The
data is stored using logistical networking approach [13].
The metadata is handled by our metadata manager. The
metadata manager supports the following operations:
create , update , and list . The create operation
creates initial version of a file and replicates metadata
between replicas. Replication is done asynchronously. The
update operation creates a new version of a given file
and runs asynchronously the proposed replica synchro-
nization algorithm. Thelist operation returns a list of
files that are stored on a particular replica.

Our prototype implementation of metadata handling
that utilizes our proposed replica synchronization algo-
rithm, is done in Java language and provides API for
metadata storage, retrieval, and update.

Preliminary experiments have been run on several
servers equipped with two Pentium 4@3.0 GHz proces-
sors, 3 GB RAM, and 1 Gbps NIC. In our testbed, we
evaluated latency of file create and update distribution.
We evaluated only a single file create distribution because
according to our algorithm, file create distribution is
never postponed. We evaluated latency of the file create
distribution for 2 to 10 nodes, the results are shown in
Figure 2. Contrary to file create distribution, the file up-
date distribution can be postponed therefore, we evaluated
several numbers of the postponed update distributions.
In particular, we evaluated latency of the file update
distribution for 2 to 10 nodes with 1 to 160 pending
updates at each replica, the results are shown in Figure 3.
In both Figures, we can see that synchronization scales
well. The number of nodes corresponds to the number of
replicas of a file and we do not expect that there will ever
be significantly more replicas.

Number of transfered messages afterupdateoperation
is linearly dependent on the number of replicas:

messages = replicas ∗ 4 + newversions − 1

where themessagesis the total number of transfered mes-
sages, thereplicasis the number of participating replicas,
and thenewversionsis the number of unsynchronized
versions of the file. The number of transfered messages is
derived from implementation of the algorithm and closely
follows its proposal which means that our implementation
does not send significantly different number of messages.
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Figure 2. Latency of file create distribution among specified number of
replicas with outlined linearity.
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Figure 3. Latency of file update distribution among specified number
of replicas with outlined linearity.

V. RELATED WORK

We discuss systems that provide either offline support
and/or file versioning. The CVS [4] system provides file
versioning and offline support, but it is not a distributed
system when we consider the way server storage is
organized. The GIT [6] is a distributed approach to file
versioning similar to the CVS. Instead of simple file
versions, it uses hash values to identify particular file
versions to simplify distributed design. Users can access
particular file versions using the hash values which makes
it more difficult than using natural numbers. Natural num-
bers allow easier identification of particular file versions.
Our proposed approach uses natural numbers to identify
file versions while preserving distributed approach and
using UUID to uniquely identify individual files. The
Ficus [1] file system aims to be very large-scale replicated
distributed file system, it uses optimistic replication strat-
egy [10] and allows to operate in disconnected mode [3].
However, the Ficus does not provide file versioning,
requiring rather complex synchronization algorithm to
solve the update conflicts. Another limitation of the Ficus
is that it does not support large files as it uses NFSv2
as transport and storage layer. The Coda file system [2]
is a heir to the AFS file system, it provides full replicas
(read/write), provides disconnected operations, and it is
also using optimistic replication strategy. Update conflicts
are detected and either automatically resolved or reported
to the user. However, nor the Coda file system provides



file versioning, and it uses leases (which are basically
time-limited locks) to maintain cache coherency.

Similar approach has been studied to support dis-
connected operations also in AFS [14]. It is based on
journaling operations performed when connection to a file
server is unavailable. When the connection is available,
the journal is replayed and possible conflicts are reported
to the user. However, this attempt has never been adopted
by AFS community.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we propose a distributed framework capa-
ble of file versioning in the way of CVS while being fully
distributed and replicated. Together with file versioning,
our system possesses strong offline support, i.e., we do not
distinguish between connected and disconnected state. We
have designed a prototype implementation and performed
preliminary experiments. The results show that idea of
strong offline support and simple file versioning is feasible
and our proposed replica synchronization algorithm scales
well. We have done some preliminary performance tests
which show that our framework is quite comparable to
NFSv3.

Our further work is directed to support work with non-
versioned files including algorithms for distribution of
updates and conflicts resolution. We relax open-to-close
semantics of access to non-versioned files. We also plan to
support more operations on the metadata manager to meet
the requirements of fully compliant POSIX I/O interface.
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