
Distributed Negative Cycle Detection Algorithms ∗

Luboš Brim, Ivana Černá and Lukáš Hejtmánek

Faculty of Informatics, Masaryk University

Brno, Czech Republic

{brim,cerna,xhejtman}@fi.muni.cz

Summary: Several new distributed algorithms for the single source shortest paths and
for the negative cycle detection problems on arbitrary directed graphs given by adjacency
list are developed, theoretically analysed, proved correct, and experimentally compared.
The algorithms are to be performed on clusters of workstations that communicate via a
message passing mechanism.

1 Introduction

The single source shortest path problem (SSSP) is a fundamental problem with many the-
oretical and practical applications and with several effective and well-grounded sequential
algorithms. The same can be said about the closely related negative cycle problem (NCP)
which is to find a negative length cycle in a graph or to prove that there are none. In
fact, all known algorithms for NCP combine a shortest paths algorithm with some cycle
detection strategy.

In many applications we have to deal with extremely large graphs (a particular appli-
cation we have in mind is briefly discussed bellow). Whenever a graph is too large to fit
into memory that is randomly accessed a memory that is sequentially accessed has to be
employed. This causes a bottleneck in the performance of a sequential algorithm owing
to the significant amount of paging involved during its execution. A usual approach to
deal with these practical limitations is to increase the computational power (especially
randomly accessed memory) by building a powerful (yet cheap) distributed-memory clus-
ter of computers. The computers are programmed in single-program, multiple-data style,
meaning that one program runs concurrently on each processor and its execution is spe-
cialised for each processor by using its processor identity (id). Parallel programs rely on
communication layer based on Message-Passing Interface standard.

Our motivation for this work was to develop a distributed model checking algorithm
for linear temporal logic[BČKP01b] which can be reduced to the negative cycle problem.

∗This work has been partially supported by the Grant Agency of Czech Republic grant No.201/03/0509.

1



In this particular application the graph to be processed is not completely given at the be-
ginning of the computation through its adjacency-list or adjacency-matrix representation.
Instead, we are given a source vertex together with a function which for every vertex com-
putes its adjacency-list. A possible approach is to generate the graph at first and then to
process it with a distributed SSSP resp. NCP algorithm. However, this approach is highly
non-efficient. If one processes the graph simultaneously with its formation it can happen
that a negative cycle is detected even before the whole graph is formated. Moreover, this
on-the-fly technique allows to generate only the part of the graph reachable from the source
vertex and thus reduces the space requirements for the graph representation. As successors
of a vertex are determined dynamically there is no need to store any information about
edges permanently which brings yet another reduction in space complexity.

A natural starting point for building a distributed algorithm is to distribute an effi-
cient sequential algorithm. Because of the aforementioned reasons we have concentrated
on algorithms which admit graphs specified with the help of adjacency lists (and omit
those presupposing adjacency matrix representation of the graph). These algorithms (for
an excellent survey see [CG99]), which are based on relaxation of graph’s edges, are in-
herently sequential and their parallel versions are known only for special settings of the
problem. For general digraphs with non-negative edge lengths parallel algorithms are pre-
sented in [MS00, RV92, CMMS98] (see [HTB98] for a comparative study) together with
studies concerning good decomposition [HTB97]. For special cases of graphs, like planar
digraphs [TZ96, DKZ94], graphs with separator decomposition [Coh96] or graphs with
small tree-width [CZ95] more efficient algorithms are known. Yet none of these algorithms
are applicable on general digraphs with potential negative-length cycles.

In this paper we propose several distributed algorithm for the general SSSP and NCP
problems on graphs with integer edge lengths and given by adjacency lists, we analyse
their worst-case complexity and we conduct an extensive practical performance study of
these algorithms. We study various combinations of distributed shortest paths algorithms
and distributed cycle detection strategies to determine the best combination measured in
terms of scalability.

2 Serial Negative Cycle Problem

We are given a triple (G, s, l), where G = (V, E) is a directed graph with n vertices and m
edges, l : E → R is a length function mapping edges to real-valued lengths, and s ∈ V is the
source vertex. The length of the path ρ =< v0, v1, . . . , vk > is the sum of the lengths of its
constituent edges, l(ρ) =

∑k

i=1
l(vi−1, vi). Negative cycle is a cycle ρ =< v0, v1, . . . , vk, v0 >

with length l(ρ) < 0. The negative cycle problem is to is to find a negative cycle in a graph
or to prove that there are none.

Algorithms for the negative cycle problem using the adjacency-list representation of
the graph construct a shortest-path tree Gs = (Vs, Es), where Vs is the set of all vertices
reachable from the source, Es ⊆ E, s is the root of Gs and for every vertex v ∈ Vs the path
from s to v in Gs is the shortest path from s to v in G.

2



The labeling method maintains for every vertex v its distance label d(v) and parent
p(v). Initially d(v) = ∞ and p(v) = null, the method starts by setting d(s) = 0. The
method maintains for every vertex its status which is either unreached, labeled, or sanned,
initially all vertices but the source are unreached and the source is labeled. The method
and is based on the scan operation. During scanning a vertex v the edges out-coming from
v are relaxed which means that if d(u) > d(v)+ l(v, u) then d(u) is set to d(v)+ l(v, u) and
p(u) is set to v. The status of v is changed to scanned while the status of u is changed
to labelled. During the computation the edges (p(v), v) for all v : p(n) 6= null induce the
parent graph Gp. If all vertices are either scanned or unreached then d gives the shortest
path lengths and Gp is the shortest-path tree. On the contrary, any cycle in Gp is negative
and if the graph contains a negative cycle then after a finite number of scan operations Gp

always has a cycle. This fact is used for the detection of negative cycle detection.

2.1 Scanning strategies

Different strategies for selecting a labeled vertex to be scanned next lead to different algo-
rithms.

The Bellman–Ford–Moore algorithm [Bel58, ?] uses for selecting the FIFO strategy and
runs in O(nm) time.

The D’Escopo-Pape algorithm [Pap74] makes use of a queue. The next vertex to be
scanned is removed from the head of the queue. A vertex that becomes labeled is added
to the head of the queue if is had been scanned previously, or to the tail otherwise.

The Pallotino’s algorithm [Pal84] maintains two queues. The next vertex to be scanned
is removed from the head of the queue if it is nonempty and from the second queue
otherwise. A vertex that becomes labeled is added to the tail of the first queue if is had
been scanned previously, or to the tail of the second queue otherwise. Both last mentioned
algorithms favour recently scanned vertices and runs in O(n2m) time in the worst case,
assuming no negative cycles.

The network simplex algorithm [Dan51] maintains the invariant that in the current
parent graph all edges have zero reduced cost (the reduced cost of the edge (v, u) is l(v, u)+
d(u)−d(v)). Therefore if the distance label of a vertex u decreases, the algorithm decreases
labels of vertices in the subtree rooted at v by the same amount. Then a new edge with
negative reduced cost (so called pivot) is found and the process continues. There are
several heuristics to find a pivot. We can search the scanned vertices and choose the pivot
according to a FIFO strategy or depending on the value of the reduced cost. The algorithm
runs in O(nm) time. DOPLNIT PODROBNEJSIE????

The Goldberg–Radzik algorithm [GR93] vyuziva topologicke triedenie a jeho distribuo-
vanuv verziu sme neuvazovali. DOPISAT????

2.2 Cycle Detection strategies

Besides the trivial and non-efficient cycle detection strategies like time out and distance
lower bound, the algorithms can use one of the following strategies: walk to the root,

3



subtree traversal and subtreee disassembly.
The walk to root method tests whether Gp is acyclic. Suppose the scanning operation

applies to an edge (v, u) (i.e. d(u) ≥ d(v)+l(v, u)) and the parent graph Gp is acyclic. This
operation will create a cycle in Gp if and only if u is an ancestor of v in the current tree.
Before applying the operation, we follow the parent pointers from v until we reach u or s.
If we stop at u we have found a negative cycle; otherwise, the scanning operation does not
create a cycle. The walk to root method gives immediate cycle detection. However, since
the path to the root can be long, the cost of applying the scanning operation to an edge
becomes O(n) instead of O(1). In order to optimise the overall computational complexity
we propose to use amortisation to pay the cost of checking Gp for cycles. More precisely,
the parent graph Gp is tested only after the underlying algorithm performs Ω(n) work. The
running time is thus increased only by a constant factor. The correctness of the amortised
strategy is based on the fact that if G contains a negative cycle reachable from s, then
after a finite number of scanning operation Gp always has a cycle [CG99]. ASI PRIPSAT,
ZE VRCHOLY JE POTREBA ZNACIT/ZAMYKAT

The subtree traversal method makes use of a symetric idea: scanning of an edge (v, u)
can create a a cycle in Gp if and only if v is an ancestor of u in the current tree. This
strategy fits naturally with the network simplex method as the subtree traversal can be
combined with the updating of the pivot subtree.

The subtree disassembly method also searches the subtree rooted at u. However, this
time if v is not in the subtree, all vertices ofthe subtreee except u are removed from the
parent graph and their status is changed to unreached. The work of subtreee disassembly
is amortized over the work to buold the subtree and cycle detection is immediate.

3 Distributed Negative Cycle Detection Algorithms

3.1 Distributed scanning strategies

We are providing distributed versions of all the algorithms except Goldberg–Radzig. The
scanning strategies can be used either in the distributed environment at no cost. All
provided algorithms have the same asymptotic complexity as sequential ones.

The distributed version of the Bellman–Ford–Moore algorithm is straight forward. Cor-
rectness of this algorithm does not depend on the sequence of relaxations. We only cannot
relax one vertex two times at once. This property is kept because the vertexes are dis-
tributed into disjunct sets and all algorithms run sequentially at one processor.

The heuristics D’Escopo–Pape and Pallotino do not need any modification at all. They
only change the sequence of relaxations that does not change the correctness.

The network simplex algorithm uses the same selection rule for relaxing as the Bellman–
Ford–Moore algorithm. We need to provide only distributed subtree traversal to maintain
the invariant about zero reduced cost. However subtree traversal is just breadth first
traversal of the parent graph that is easy to distribute. The parent graph does not contain
the cycle unless original graph contains reachable negative cycle.

4



3.2 Distributed Cycle Detection strategies

All three considered cycle detection strategies are usable in the distributed environment
without the change of their complexity.

The subtree traversal method needs just a little change. The breadth first search in the
parent tree can be distributed in natural way. We only have to check if the found cycle
is really the negative cycle, not every found cycle have to be the negative one because of
asynchronous relaxations. MOZNA VICE VYSVETLIT????

The more complicated is the subtree disassembly. The correctness of sequential version
cannot be hold while we do no vertex locking. We do not have to find some very special
negative cycle when all instances of algorithm do strictly synchronous sequence of relax-
ations and subtree disassemblies. Another strategy is need to hold the correctness. We
have used the distance lower bound together with this strategy. Distance lower bound was
never achieved in our testbed.

The walk to root uses vertex locking so the correctness is hold. We need to lineary
order these marks (locks) to avoid discovery of non existent negative cycle. We do walk to
root and we are marking vertexes with some stamp. If we find marked vertex we decide as
follows. Vertex is marked with lesser stamp then we mark this vertex with current stamp.
Vertex is marked with the same stamp then we find the negative cycle. Vertex is marked
with greater stamp then we stop the walk to root as we do not find the cycle. [BČKP01a]

3.3 The pseudo–codes

One of the processors is called Manager that should own the source vertex s and that starts
and stops the computing. The variable α identifies the current processor. The function
Owner(u) identifies the processor that own vertex u.

Each processor runs the Main procedure with source vertex s. The procedure send msg
sends a message to another processor. The procedure process messages() checks the in-
comming messages queue and do appropriate action.

The pseudo–codes for D’Escopo Pape and Pallotino heuristics are not included. The
modification of Bellman–Ford–More algorithm to those heuristics is trivial.

1 proc Main(s)
2 InitializeSingleSource(); Qα := empty;
3 if α = Manager then push(Qα, s); d(s) := 0; p(s) := nil; fi

4 while not finished do

5 if Qα 6= empty then u := pop(Qα); {STD, STT, WTR} Scan(u); fi

6 process messages();
7 od

1 proc InitializeSingleSource()
2 foreach v ∈ V do if Owner(v) = α then p(v) := nil; d(v) := ∞; fi od

5



Bellman–Ford–Moore with Subtree Disassembly

1 proc STD Scan(u)
2 foreach v ∈ Succ(u) do

3 if Owner(v) = α
4 then STD Update(v, u, d(u) + l(〈u, v〉));
5 else send msg(Owner(v), ”STD Update(v, u, d(u) + l(〈u, v〉))”); fi

6 od

1 proc Update(v, u, t)
2 if d(v) > t
3 then d(v) := t; p(v) := u;
4 if d(u) < threshold then ”Negative cycle found”; terminate; fi

5 Std(v, u, l(v, u));
6 if v 6∈ Qα then push(Qα, v); fi

7 fi

1 proc Std(v, p, l)
2 if p(v) 6= p then return; fi

3 Local Q1; push(Q1, (v, l);
4 while Q1not empty do

5 (v1, l1) := pop(Q1);
6 if (v1 = a) ∧ (l1 < 0) then ”Negative cycle found”; terminate; fi

7 foreach u ∈ Succ(v1) ∧ p(u) = v1 do

8 if Owner(u) = α
9 then push(Q1, (u, l1 + l(〈v1, u〉))); p(u) := deleted;

10 if u ∈ Qα then remove(Qα, u); fi

11 else send msg(Owner(u), ”Std(u, p, l1 + l(〈v1, u〉))”); fi

12 od od

Network Simplex

1 proc STT Scan(u)
2 foreach v ∈ Succ(u) do

3 if Owner(v) = α
4 then STT Update(v, u, l(〈u, v〉), d(u));
5 else send msg(Owner(v), ”STT Update(v, u, l(〈u, v〉), d(u))”); fi

6 od

1 proc Update(v, u, luv, t)
2 if d(v) > t + luv
3 then if p(v) = nil then d(v) := t + luv; p(v) := u;
4 else p(v) := u; Pivot(v, u, d(v)− (t + luv), luv); fi fi

5 if p(v) = u then push(Qα, v); fi

6



1 proc Pivot(v, u, t, luv)
2 LocalQ1; push(Q1, (v, luv));
3 while Q1not empty do

4 (v1, l1) := pop(Q1);
5 if (u = v1) ∧ (l1 < 0) then ”Negative cycle found”; terminate; fi

6 if (u = v1) then continue; fi

7 d(v1) := d(v1) − t;
8 foreach u1 ∈ Succ(v1) ∧ p(u1) = v1 do

9 if Owner(u1) = α
10 then push(Q1, (u1, l1 + l(〈v1, u1〉));
11 else send msg(Owner(u1), ”Pivot(u1, u, t, l1 + l(〈v1, u1〉))”); fi od

12 if v1 ∈ Qα then remove(Qα, v1); fi od

Bellman–Ford–Moore with Walk to Root

1 proc WTR Scan(v)
2 foreach (v, u) ∈ E do

3 if Owner(u) = α
4 then WTR Update(u, v, d(v) + l(v, u))
5 else send message(Owner(u), ”WTR Update(u, v, d(v) + l(v, u))”) fi

6 od

1 proc WTR Update(u, v, t)
2 if d(u) > t then if walk(u) 6= nil
3 then if Owner(v) = α
4 then push(Qα, v)
5 else send message(Owner(v), ”push(Q, v)”) fi

6 else d(u) := t; p(u) := v;
7 if WTR amortization then WTR([u, stamp], u);
8 stamp + + fi;
9 if u /∈ Qα then push(Qα, u) fi fi fi

1 proc WTR([origin, stamp], at)
2 done := false;
3 while ¬done do

4 if owner(at) = α
5 then if walk(at) = [origin, stamp] then ”Negativecyclefound”;
6 terminate; fi

7 if (at = source) ∨ (walk(at) > [origin, stamp])
8 then if Owner(origin) = α
9 then REM([origin, stamp], origin)

10 else send message(Owner(origin),
11 ”REM([origin, stamp], origin)”); fi

12 done := true; continue; fi

7



13 if walk(at) = [nil, nil]) ∨ (walk(at) < [origin, stamp])
14 then walk(at) := [origin, stamp];
15 at := p(at);
16 fi

17 else send message(Owner(at), ”WTR([origin, stamp], at)”);
18 done := true; fi

19 od

1 proc REM ([origin, stamp], at)
2 done := false;
3 while ¬done do

4 if Owner(at) = α
5 then if walk(at) = [origin, stamp] then walk(at) := [nil, nil];
6 at := p(at);
7 else done := true fi

8 else send message(Owner(at), ”REM([origin, stamp], at)”);
9 done := true fi

10 od

4 Comparison of Distributed Algorithms

5 Conclusions

We provide and analyse distributed algorithms for the general SSSP and NCP problems
for graphs specified with the adjacency lists. The algorithms are designed for networks of
workstations where the input graph is distributed over individual workstation and work-
stations communicate via a message passing interface.

Based on our experiments we conclude that in situations where no apriori information
about the graph is given the best choice is the Subtree Disassembly algorithm (in the
sequential version known also as Tarjan’s algorithm). In case of graphs with negative-
valued edges the best choice is to co-join this algorithm with the Pallottino heuristic.

References

[BČKP01a] L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed shortest path for
directed graphs with negative edge lengths. Technical report, Faculty of In-
formatics, Masaryk University Brno, 2001.

[BČKP01b] L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed ltl model checking
based on negative cycle detection. In FST TCS 2001: Foundations of Software
Technology and Theoretical Computer Science, number 2245 in Lecture Notes
in Computer Science, pages 96–107. Springer-Verlag, 2001.

8



[Bel58] R. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87–90, 1958.

[CG99] B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms.
Mathematical Programming, Springer-Verlag, 85:277–311, 1999.

[CMMS98] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of
Dijkstra’s shortest path algorithm. In Proc. 23rd MFCS’98, volume 1450 of
Lecture Notes in Computer Science, pages 722–731. Springer-Verlag, 1998.

[Coh96] E. Cohen. Efficient parallel shortest-paths in digraphs with a separator de-
composition. Journal of Algorithms, 21(2):331–357, 1996.

[CZ95] S. Chaudhuri and C. D. Zaroliagis. Shortest path queries in digraphs of small
treewidth. In Automata, Languages and Programming, pages 244–255, 1995.

[Dan51] G.B. Dantzig. Application of the simplex method to a transportation problem.
Activity Analysis and Production and Allocation, 1951.

[DKZ94] P. Spirakis D. Kavvadias, G. Pantziou and C. Zaroliagis. Efficient sequential
and parallel algorithms for the negative cycle problem. In Proc. 5th ISAAC’94,
volume 834 of Lecture Notes in Computer Science, pages 270–278. Springer-
Verlag, 1994.

[GR93] A. V. Goldberg and T. Radzik. A heuristic improvement of the Bellman-Ford
algorithm. AMLETS: Applied Mathematics Letters, 6:3–6, 1993.

[HTB97] M. Hribar, V. Taylor, and D. Boyce. Performance study of parallel shortest
path algorithms: Characteristics of good decompositions. In Proc. ISUG ’97
Conference, 1997.

[HTB98] M. Hribar, V. Taylor, and D. Boyce. Parallel shortest path algorithms: Identi-
fying the factors that affect performance. Technical Report CPDC-TR-9803-
015, Center for Parallel and Distributed Computeing, Norhwetern University,
1998.

[MS00] U. Meyer and P. Sanders. Parallel shortest path for arbitrary graphs. In
EUROPAR: Parallel Processing, 6th International EURO-PAR Conference,
Lecture Notes in Computer Science. Springer-Verlag, 2000.

[Pal84] S. Pallottino. Shortest-path methods: Complexity, interrelations and new
propositions. Networks, 14:257–267, 1984.

[Pap74] U. Pape. Implementation and efficiency of Moore-algorithms for the shortest
path problem. Mathematical Programming, 7:212–222, 1974.

9



[RV92] K. Ramarao and S. Venkatesan. On finding and updating shortest paths
distributively. Journal of Algorithms, 13:235–257, 1992.

[TZ96] J. Traff and C.D. Zaroliagis. A simple parallel algorithm for the single-source
shortest path problem on planar digraphs. In Parallel algorithms for irregu-
larly structured problems (IRREGULAR-3), volume 1117 of Lecture Notes in
Computer Science, pages 183–194. Springer-Verlag, 1996.

10


