
Grid Infrastructure Monitoring as Reliable

Information Service

Petr Holub, Martin Kuba, Luděk Matyska, and Miroslav Ruda

Institute of Computer Science, Masaryk University,
Botanická 68a, 602 00 Brno, Czech Republic
{hopet,makub,ludek,ruda}@ics.muni.cz

Abstract. A short overview of Grid infrastructure status monitoring
is given followed by a discussion of key concepts for advanced status
monitoring systems: passive information gathering based on direct ap-
plication instrumentation, indirect one based on service and middleware
instrumentation, multidimensional matrix testing, and on-demand active
testing using non-dedicated user identities. We also propose an idea of
augmenting information provided traditionally using Grid information
services by information from the infrastructure status monitoring which
gives verified and thus valid information only. The approach is demon-
strated using a Testbed Status Monitoring Tool prototype developed for
a GridLab project.

1 Introduction

A large-scale heterogeneous Grid is subject to frequent changes and service dis-
ruptions of some of the huge number of components that constitute this en-
vironment. Grid management requires on-line monitoring of the resources to
determine their state and availability. The less dynamic data about the Grid
resources are usually published by the resources themselves using information
services (e. g. Meta Directory Service from Globus package [2]), while the highly
dynamic data are usually published via different means (some implementation
of the general Grid Monitoring Architecture, GMA [1]). The information pro-
vided by both of these approaches is used by other Grid services for discovery
of elements of the environment and the ways these elements can be used.

The general Grid monitoring covers two complementary areas: application
monitoring and infrastructure monitoring. Both can be subdivided into perfor-
mance monitoring and status monitoring. Application performance monitoring,
application status monitoring, and infrastructure performance monitoring are
out of scope of this paper. We are dealing with Grid infrastructure status mon-
itoring, which will be called status monitoring for brevity. Status monitoring
covers infrastructure sanity checks, availability and interoperability of comput-
ers, other components, as well as web services and Grid services [5].

In this paper we introduce an idea of augmenting the information service by
the status monitoring service. The augmentation is performed by verifying the
information provided by the information service using the data from the status



monitoring, and allowing validated results only. Such model is ready for testing
within the GridLab project where GridLab Testbed Status Service [3] will be
used as one of information sources. A description of GridLab Testbed Status
Monitoring Tool prototype is also covered by this paper. Roughly, the primary
goal for the information service augmentation is a provision of enough data
supporting production-quality Grid management; another goal is a verification
and correction of static data provided by the “classical” information services.

2 Infrastructure Status Monitoring

Classical infrastructure status monitoring uses so called active tests, run by the
monitoring service itself. These tests are fully under the control of the status
monitoring service, but they pose additional load on the monitored resources
(some sensors must run on the resources, the monitoring data are transmitted
over the network, etc.). The alternative is passive monitoring1 that gathers mon-
itoring data directly from the users’ applications running on the Grid (e. g. large
data transfers). This passive monitoring poses only negligible additional load on
the Grid but it is irregular and of very heterogeneous nature. Therefore, a perfect
status monitoring system should complement the passive monitoring with active
tests in cases where enough data are not available (e. g. due to longer period of
user inactivity).

Both monitoring approaches use sensors as the primary data sources (gener-
ators). They can be run either in “push” mode, when sensor continuously sends
data to any subscribed monitoring service, or in “pull” mode when the sensor is
polled each time the data is required by monitoring service.

Passive monitoring model was based on an idea of an application instru-
mentation, i. e. a specific code is incorporated into the applications to report
monitoring data. With the monolithic application model this means that devel-
opers themselves must include the instrumentation calls into their own code.
Use of instrumented libraries linked at compile time or even better at run time
is a step toward less obtrusive monitoring. With the increased use of service-
based or middleware-based applications the instrumentation calls can be hidden
within the service code or in the middleware and the application developers or
the users do not have to be even aware of the fact that the whole program or
its specific run is instrumented. The application based instrumentation (either
directly in the application code or within the higher layers of the service code)
has one major advantage—it can serve as a source of very complex monitoring
data. The successful completion of a high-level application request (e. g. a service
or even a set of services) is simultaneously a proof of proper function of all the
services used as well as the lower middleware layers. A simple message about
successful service call covers a success of many related (lower) services, increas-
ing substantially scalability of the monitoring by allowing the system to omit
individual tests that are implicitly successful. On the other hand, a failure can

1 For the sake of clarity we don’t use word “test” in the context of passive information
gathering in this paper and we reserve it for active tests.



immediately trigger more detailed status tests of called services, thus leading to
very fast failure discovery.

Traditionally status monitoring has been performed on machine oriented ba-
sis: either the machines sent continuously some data, or machine by machine
was tested whether all required and advertised services are running. Introduc-
tion of widely deployed services within the Open Grid Services Architecture [5]
framework leads to the necessity to perform also the service oriented monitoring
to check that all services are running properly. Most services run in a machine
independent way, i. e. they are not tightly associated with a particular machine
and can run in several instances simultaneously or can be easily re-started on
any machine from a subset of Grid machines. This means that a service—not a
machine—must be tested. Testing of a service means that the service must be
found (discovered), connected to and actually tested (run) dynamically, with no
stored (cached) information about the placement of the service.

For many services it is important to test availability on N -to-N or M -to-N
basis (where M might be subset of N or it might be completely different and
independent set) instead of 1-to-N basis. For instance data transfer service may
be required to be capable of transferring data from any node to any node (or
even a set of nodes). Or a user may be required to be able to login from any
node within a selected subset of Grid nodes to any node from different subset.
As a first step towards more complex solution, we have introduced matrix tests
that perform either M -to-N or N -to-N tests to cover such cases.

Another important aspect of the status monitoring is whether the tests run
using some dedicated testing identity (e. g. using dedicated service certificate)
or whether the tests are run using ordinary users’ identities. While the second
option is rather automatic for instrumented checks, it must be ensured that
similar way is possible for active checks as well. It is also desirable to be able to
run active tests on demand under specific user identity as this provides means
for looking for a cause of a problem encountered by particular users only.

3 Monitoring Services as Information Services

Augmentation

Information services traditionally advertise information about resources avail-
able on the Grid (machines and their capabilities, job submission mechanisms,
services etc.). Owners of the resources or directly the resources usually pub-
lish such information about the resources into information service without any
validation, and therefore obsolete or invalid information can be easily advertised.

Status monitoring can augment traditional information services by taking
information published in them, checking validity and then publishing results
in form of verified and thus authoritative information about resources using
interface common to information services.

Another problem with the Grid information services is that the most common
information service—Globus MDS—also shows serious performance bottleneck
when too many non-homogeneous information providers are subscribed to it (esp.



with high percentage of “problematic” ones, like information providers behind
firewalls or incompatible versions of software clients). Status monitoring service
can mitigate these problems by providing “cached” and valid only data from
such service.

4 Prototype Implementation

GridLab Testbed Status Monitoring Tool prototype [3] has been designed to
test availability and sanity of Grid environment (this system is not used for
performance monitoring as this is covered by Mercury [4], which is other part
of the GridLab project). Very first version of this tool was based on monitoring
tool available from TeraGrid Project [6]. This monitoring tool comprised a single
threaded Perl script performing all tests in sequential order, making this solution
not scalable. Also adding new tests was not easy and decreased the scalability
even further. Based on the experience gained with this and similar tools we
created new design of the testbed monitoring tool.

Current prototype has a core written in Java language and uses clean layered
architecture shown in Fig. 1. We not only made testing independent of other
parts, we also split a storage of results from the presentation, providing very
high system flexibility. System is easily configurable using XML language. This
architecture is scalable enough for small to medium size Grids, with at most
few hundreds of nodes. The system may need to be enhanced with hierarchical
distributed setup for larger Grids, or with robust features from peer-to-peer
networks if fault tolerance is of a high concern.

Test Result Database

Presentation layer

XML/XHTML

interface

web service

interface

Testing layer

Testing Core

Test 1

Test n

Storage layer

Fig. 1. GridLab testbed status monitoring architecture



Testing layer. The current GridLab testbed status monitoring is still a cen-
tralized activity, which means all the tests are initiated from one site and all
the results are gathered there. While the sequential run of individual tests is
inefficient, the fully parallel run of all tests is also impossible for larger Grid
infrastructure (with fifty or more resources in the testbed). The fully parallel
run may not only overload the testing machine, it may also pose an unaccept-
able load on the whole Grid infrastructure. Therefore, we use thread pool of
configurable size to perform tests in a limited configurable parallel setup provid-
ing us compromise between load on both testing and tested infrastructure and
scalability needed.

The testing layer is exposed through a language independent interface which
makes it possible to implement new tests in virtually any programming language.
For example current tests based on Globus 2 protocols have been written either
using Java CoG or using small C wrapper for executing binaries written in other
languages. The wrapper takes care of timeouts for hung-up jobs and clean-up
for incorrectly finished ones, making the monitoring tool prototype resistant to
failures. Especially hang-ups caused by firewalls incorrectly discarding packets
showed to be a constant problem in Grid environment.

Test dependencies have been implemented that allow skipping of tests for
which some mandatory prerequisite has failed. This decreases the unnecessary
load on the tested Grid infrastructure. A language for general description of more
complex dependencies is under development. We plan to use the same approach
for the passive monitoring based on service and application instrumentation (the
description of dependencies is crucial in such environment).

The architecture also supports a user triggered on-demand tests. These tests
run under users’ own identities and provide valuable data for problem and bug
tracking.

Storage layer. The regular tests are run periodically and their results are stored
by the storage layer. As the history must be made available for inspection, the
data are stored in a database. While currently a PostgreSQL database is used,
any other relational database can be easily substituted since JDBC database
interface is employed.

Presentation layer. The presentation layer supports both static and dynamic
web pages creation. For static results presentation, the test results are converted
to XML and then transformed to a static XHTML page using XSLT processing.
The XHTML page mimics the original TeraGrid tests layout and provides good
general overview of the current infrastructure status in the form of a full matrix
of colored boxes.

For dynamic results presentation integrated in a Grid portal, GridSphere [7]
portlet based interface with multi-lingual capabilities has also been implemented.
This interface supports browsing through status data history.

Test results are available via web service interface as well which allows for
using this monitoring service as an information service by other services on the
Grid. This specific web service uses SOAP transport protocol with GSI security



and the implementation is moving towards OGSA compliance (now lacking few
of the required Grid service interfaces).

4.1 Incorporated Tests

While all currently implemented tests use active pull model, our general status
monitoring framework supports easy integration of passive monitoring as well.
Active tests were chosen because of faster and easier implementation compared
to passive monitoring and especially applications, services and middleware in-
strumentation. At this stage of the development, the “production” application
runs are still a minority on the GridLab testbed, which means that passive mon-
itoring can not yet be a major source of monitoring information. All tests are
run on regular scheduled basis with possible activation on demand by users using
their own identities.

Simple tests. A test from the simple test category produces a scalar value for
each tested machine. The prototype currently incorporates all tests available in
the original TeraGrid software and adds also several new tests:

– Globus-2 tests: GRIS, GSI-FTP, Gatekeeper, GSI-SSH, and GIIS,
– availability of MPI C and MPI Fortran compilers,
– job manager tests: tests all job managers advertised in information services,

whether they can run both normal and MPI jobs,
– GridLab specific tests: check on accepted CAs (whether compliant to Grid-

Lab requirements), check whether required software is installed and re-
ally working (C, C++, CVS, F90, GNU make, Perl, Java), check whether
grid-mapfile contains all required users, check GridLab Mercury [4], and
GridLab MDS Extensions and MDS web service [8].

Except for GIIS which is tested once per GIIS server (in the case of GridLab only
once for the whole testbed since there is only one GIIS server in the testbed),
all other tests run on per machine basis.

The simple tests on GridLab testbed currently take about 15 minutes to test
all of 17 services on all 19 machines using 6 concurrent threads. The time is
spent mostly in waiting for response due to delays in network communication
and in waiting for timeouts, because the widespread use of firewalls leaves no
way to distinguish a slow responding service from unavailable service other than
waiting for a timeout. The only notable CPU load is due to authentication and
encryption in GSI communication.

Service tests. With OGSA model that is generally seen as the next genera-
tion model for the Grid environment, Grid services become cornerstones of Grid
infrastructure. Therefore service oriented tests are appropriate solution for mon-
itoring infrastructure based on this paradigm. Services may run on various Grid
nodes and the important issue is whether service is running correctly and not
whether the service runs on one particular machine. Another fact supporting



approach different from machine oriented tests is that different machines will
run different subsets of services and eventually the matrix of host and services
may become quite sparse.

All the services produced by GridLab are persistent GSI-secured web ser-
vices. It means they are accessible using HTTPG protocol (HTTP over GSI).
Invocation of the web service methods by the testing tool is implemented using
either Java CoG or C program using gSOAP tool [9] with GSI plug-in. The ser-
vices support Grid security features, however to full OGSA compatibility they
lack portType inheritance, because most of them are implemented in C, and
there is no C server-side implementation of OGSA available yet.

In the first stage the service status monitoring checks whether the service
is responsive. We could not rely on all services’s API being inherited from a
single portType, so we require that each GridLab service must provide an op-
eration called getServiceDescription() returning a string containing service
description. The responsiveness of a service is checked by calling this operation.

We have developed first stage tests for the following GridLab web services:
GRMS, Adaptive service, Meta-data service, Replica Catalog, Data Movement,
Data Browsing, Authorization, Message Box Service, and Testbed Status.

Second stage is aimed at verifying whether service is operational and performs
as expected. Actual tests differ largely from service to service. Up to now second
stage tests for Data Movement service and GRMS have been implemented.

The service tests on GridLab testbed currently take just several seconds to
test all 9 services.

Matrix tests. Up to now two matrix tests have been implemented for GridLab
infrastructure: Data Movement service test and GSI-SSH tests. The first one
checks correct operation of Data Movement service between all pairs of nodes in
an N -to-N fashion thus forming two-dimensional matrix of results. The test can
be also easily extended to third dimension accommodating the possibility that
data transfer can be initiated from a third node, i. e. node that is neither source
nor target of the data being transferred. This example demonstrates problem
with extreme load growth imposed on underlying infrastructure when complex
active measurements and tests are put in use.

The GSI-SSH test checks whether it is possible to login from one node to
another node. The test can work in either full N -to-N or in M -to-N fashion since
only a selected subset of Grid nodes can be allowed to initiate SSH connection
to the rest of the Grid.

While the matrix tests are not scalable, they provide invaluable information
about the “real” Grid status. The current history of use of the data movement
test had shown that it is almost perfect source of monitoring information about
node mutual interoperability (as opposed to the 1-to-N centralized tests which
check just interoperability between the testing machine and each node). The
matrix tests reflect much better the actual situation users encounter when using
a Grid and are able to find very specific and subtle problems (e. g. various in-
compatible firewall configurations). These tests have also character of complex
tests that are similar to high level application tests (see Sec. 2), which means



that if the test passes correctly all lower layers and services are verified as well.
If failure of such test is experienced, specific lower level tests can be immediately
triggered to identify precise source of the problem. For example Data Movement
matrix tests will not run without firewalls set up correctly, grid-mapfile in-
stalled properly etc. This complex property allows to omit a lot of other tests
thus compensating the scalability issue to some extent.

The matrix tests on GridLab testbed currently take about 2 hours to test a
full matrix of 17× 17 data transfers among all 17 machines, most of the time is
again spent waiting for timeouts caused by firewalls.

We expect that most of the inter-node tests required by full matrix setup
could be replaced by the passive monitoring information when the Grid is used
for “real” production (the applications will become actual data sources). This
will add the necessary scalability to this kind of tests.

5 Future Work

Current status monitoring prototype tool mostly implements active tests in
bottom-up fashion, i. e. testing starts from low level tests and proceeds to higher
levels only if lower level prerequisites are successfully tested. For future work we
are targeting opposite approach in which tests of lower level services and layers
will be triggered only when higher level test fails to allow more precise identifi-
cation of source of problems. This approach will be enabled by employing high
degree of passive monitoring based on instrumentation of applications, services,
and various middleware layers resulting in lower load on Grid infrastructure in-
duced by monitoring itself. Heavier use of push mode sensors goes hand in hand
with deployment of passive monitoring model which results in far more scalable
and inobtrusive monitoring solution.

We plan to extend the Grid Application Toolkit [10] (the specific middleware
layer connecting transparently applications with lower layers of Grid infrastruc-
ture) which is developed within the GridLab project with instrumented inter-
faces that will allow use of applications as monitoring data providers. In the same
time we plan to use this instrumented layer to develop a monitoring worm that
will “travel” autonomously through he Grid, gathering the monitoring informa-
tion from used middleware components and nodes and sending this information
(probably in a digested form when no error is to be reported) to some central
site. The travel of the worm will be accomplished in close collaboration with
all the middleware components (resource discovery, resource brokerage, job sub-
mission service etc.), thus testing extensively the Grid environment as a whole.
The combination of active tests and passive monitoring with the data provided
by the (regular, random or user triggered) worm reports should cover the whole
Grid with a minimal obtrusive overhead. Understanding the interactions of these
monitoring components will be subject of our future study.

We also want to build a database of typical problems occurring in the Grid
environment. It will be used to produce better explanation of problems detected,
thus improving understanding of the test results by end users.



6 Conclusion

A Grid infrastructure status monitoring system is an essential component of
any Grid that aims to provide a usable working environment. Such a system is
also a core of the Grid management, including information provision and valida-
tion for resource management on the Grid. The status monitoring system being
developed within the EU GridLab project is one of the most comprehensive sta-
tus monitoring systems currently deployed on a really large scale heterogeneous
Grid. As not only individual components, but also emerging Grid services are
permanently monitored, it represents a preliminary version of an OGSA com-
pliant status monitoring system. Another advantage of this system is its use as
information service augmentation and verification tool, providing a guarantee for
a reliable information provided by a general information service (like the MDS).

The ability to define test dependencies in the monitoring system decreases
monitoring overhead on the Grid infrastructure through elimination of the tests
known in advance to fail. As a complement to this approach, we introduced some
very high level tests whose successful completion signalizes that all the lower
layers are working and eliminates necessity of individual tests. An example of
such higher level tests that is already used on the GridLab testbed is the Data
Movement service test. Even the N

2 complexity of this test is not prohibitive
as it can potentially replace a large bunch of simpler, but also obtrusive tests.
These will be needed only for a targeted inspection when the higher level tests
fail.

The passive, service instrumentation based monitoring is another part of the
whole Grid monitoring system. While not discussed in this paper to much extent,
they may eventually replace most of the active (monitoring system triggered)
tests and thus keeping the overhead of the Grid monitoring to the acceptable
level even in very large Grids.

Acknowledgement. This work is supported by the European Commission, grant
IST–2001–32133 (GridLab).

References

1. Tierney, B., Aydt, R., Gunter, D., Smith, W., Swany, M., Taylor, V., Wolski, R.:
A Grid Monitoring Architecture. GGF Technical Report GFD-I.7, January 2002.
http://www.gridforum.org/Documents/GFD/GFD-I.7.pdf

2. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Information Ser-
vices for Distributed Resource Sharing. In Proceedings of the 10th IEEE Interna-
tional Symposium on High-Performance Distributed Computing (HPDC-10), IEEE
Press, August 2001.

3. Holub, P., Kuba, M., Matyska, L., Ruda, M.: GridLab Testbed Monitoring –
Prototype Tool. Deliverable 5.6, GridLab Project (IST–2001–32133), 2003. http:
//www.gridlab.org/Resources/Deliverables/D5.6.pdf

4. Balaton, Z., Gombás, G.: Resource and Job Monitoring. In the Grid. Proc. of the
Euro-Par 2003 International Conference, Klagenfurt, 2003. 404–411



5. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. Open Grid Service
Infrastructure WG, Global Grid Forum, June 22, 2002. http://www.globus.org/
research/papers.html#OGSA

6. Basney, J., Greenseid, J.: NCSA TestGrid Project: Grid Status Test. http://grid.
ncsa.uiuc.edu/test/grid-status-test/

7. Novotny, J., Russell, M., Wehrens, O.: GridSphere: A Portal Framework for Build-
ing Collaborations. 1st International Workshop on Middleware for Grid Computing,
Rio de Janeiro, June 15 2003.

8. Aloisio, G., Cafaro, M., Epicoco, I., Lezzi, D., Mirto, M., Mocavero, S., Pati, S.:
First GridLabMDS Release. Deliverable 10.3, GridLab Project (IST–2001–32133),
2002. http://www.gridlab.org/Resources/Deliverables/D10.3c.pdf

9. van Engelen, R. A., Gallivan, K. A.: The gSOAP Toolkit for Web Services and Peer-
To-Peer Computing Networks. In the proceedings of IEEE CCGrid Conference
2002.

10. Allen, G., Davis, K., Dolkas, K. N., Doulamis, N. D., Goodale, T., Kielmann, T.,
Merzky, A., Nabrzyski, J., Pukacki, J., Radke, T., Russell, M., Seidel, E., Shalf,
J., Taylor, I.: Enabling Applications on the Grid: A GridLab Overview. Interna-
tional Journal of High Performance Computing Applications: Special issue on Grid
Computing: Infrastructure and Applications, August 2003.


