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Abstract. Embedded Block Coding with Optimal Truncation (EBCOT)
is the fundamental and computationally very demanding part of the
compression process of JPEG2000 image compression standard. EBCOT
itself consists of two tiers. In Tier-1, image samples are compressed using
context modeling and arithmetic coding. Resulting bit-stream is further
formated and truncated in Tier-2. JPEG2000 has a number of applications
in various fields where the processing speed and/or latency is a crucial
attribute and the main limitation with state of the art implementations.
In this paper we propose a new parallel approach to EBCOT context
modeling that truly exploits massively parallel capabilities of modern
GPUs and enables concurrent processing of individual image samples.
Performance evaluation of our prototype shows speedup 12 times for the
context modeller, and 1.4–5.3 times for the whole EBCOT Tier-1, which
includes not yet optimized arithmetic coder.

1 Introduction

JPEG2000 [1] is an image compression standard created by the Joint Photographic
Experts Group (JPEG). JPEG2000 is aimed at providing not only compression
performance superior to the current JPEG standard but also advanced capabil-
ities demanded by applications in the fields such as medical imaging [2], film
industry [3], or image archiving. It features optional mathematically lossless
processing, error resilience, or progressive image transmission by improving pixel
accuracy and resolution. On the other hand, the advanced features and the superb
compression performance yields higher computational demands which implies
slower processing.

Graphics processing units (GPUs) have become a popular computing archi-
tecture in last half of decade due to their rapid increase of performance compared
to traditional CPUs [4]. While parallel and hierarchical architecture of GPUs
allows for impressive increase of performance at moderate cost, it requires spe-
cific regards when designing and implementing algorithms to utilize potential of
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the GPU (Section 2.2). Since JPEG2000 introduction, there has been a great
deal of effort to provide JPEG2000 applications with sufficient processing speed
and bandwidth. The majority of this effort has its base in FPGA and VLSI
in general [5–7]. As for the GPU computing, there has been attempts [8, 9] to
coarse-grained parallelization resulting in performance very close to CPU imple-
mentations. Our goal is adaptation or re-formulation of individual algorithms
resulting in fine-grained and more effective design which fits the specifics of
modern GPUs better.

The simplified block diagram of compression system defined by JPEG2000
standard is illustrated in Fig. 1. Prior to actual compression the image data
is transformed using Discrete Wavelet Transform [10–12] (DWT). JPEG2000
standard prescribes use of CDF 9/7 and CDF 5/3 wavelet transform [13] for
lossy and lossless compression modes respectively. In case of lossy compression,
the transformed coefficients are quantized using uniform scalar dead-zone quanti-
zation [14]. The process of quantization introduces the data precision reduction
in order to make it more compressible. Thereafter the data is compressed in
EBCOT Tier-1 and the resulting bit-stream is further formated in Tier-2. As
can be seen in Fig. 2, the most computationally intensive parts of JPEG2000 are
DWT, Context Modeling, and Arithmetic Encoding.

This paper describes a novel fine-grained GPU-based parallel design of the
context modeling part of JPEG2000. Section 2 provides background on context
modeling in JPEG2000 and mentions GPU basics needed for further explanations
of our design introduced in Section 4. Section 3 reviews related work. The
evaluation methodology, experimental results and their discussion is in Section 5.
Section 6 summarizes the key findings and presents directions for future work.

2 Preliminaries

As noted above, EBCOT is a two-tiered coder. The input to Tier-1 is DWT-
transformed image partitioned into so called code-blocks4. Each code-block is
4 Recommended code-block dimensions are 16× 16, 32× 32, and 64× 64. The total

number of code-block samples may not exceed 4096.
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processed independently in Tier-1 using context modeling and arithmetic coding
to form an embedded bit-stream representing the compressed code-block. The
context modeller analyzes the bit structure of the images and collects contextual
information (CX) which is passed together with bit values (D) to the arithmetic
coder. The JPEG2000 uses MQ-Coder—a context adaptive binary arithmetic
coder—defined in JBIG2 standard [15]. The MQ-Coder codes bit values based
on its context information. There is 19 different contexts defined and for each
of them, the arithmetic coder maintains and consecutively adapts probability
estimate [16, 17]. Final compressed bit-stream is formatted during Tier-2, where
the embedded bit-streams are combined so that the desired rate-distortion criteria
is fulfilled.

The following explanation of JPEG2000 and EBCOT processes uses only
single color component of the image for sake of simplicity. This approach is
possible because EBCOT Tier-1 processes color components independently [18,
Chapter 6.6].

2.1 EBCOT Tier-1 Context Modeling

The context modeling module processes code-blocks bit-plane by bit-plane5

starting from the most significant bit-plane (MSB). Each bit-plane is coded
in three passes but each bit is processed in exactly one pass—i.e., each pass
scans through the entire bit-plane but processes only some of the bits. The
decision whether to process a bit in current pass or not is made based on current
state of the bit and states of its neighbours. Note that the bit state information
changes as the bits are processed; therefore, the process is defined sequentially
with the prescribed scanning order to create and maintain correct state. The
scanning order in the bit-plane is illustrated in [18, p. 166]. The three passes are
i) Signification Propagation Pass (SPP), ii) Magnitude Refinement Pass (MRP),
and iii) Clean-Up Pass (CUP). Each pass encodes a bit using one or more of
the following four bit-coding operations defined by JPEG2000 standard: Zero
Coding (ZC), Run-Length Coding (RLC), Magnitude Refinement Coding (MRC),
and Sign Coding (SC). Based on bit values and state informations, these four
operations generate 1–4 CX,D pairs per each bit in a bit-plane as input for the
arithmetic encoder.

The state information consists of three state variables σ, σ′, η. The σ and σ′

states are shared by all the bits of a pixel, indicating that the first non-zero bit
of the pixel has already been processed and that MRC coding has been applied,
respectively. The η is not shared, and indicates the bit has been processed in
SPP pass on the current bit-plane [18].

A bit is in a so called preferred neighborhood (PN) if at least one of its 8
adjacent neighbours is significant, i.e., has σ = 1. All bits having σ = 0 and

5 Bit-plane is defined as one-bit image composed of the same bit of each pixel, see [19,
Chapter 3]. Number of bit-planes corresponds to the number of bits per pixel for
each color component of the image. Given the preceding DWT transformation, each
“pixel” in actually a DWT coefficient generated by the transformation.
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being in the PN are coded in SPP pass. The bits of the pixels that have become
significant in the previous bit-planes, are coded in second, MRP, pass. Those bits
have σ = 1 and η = 0. The rest of bits in current bit-plane is processed in CUP
pass—i.e., all bits having σ = η = 0 after the previous two passes.

2.2 GPU architecture and programming model

Attracted by their raw computing power, a number of general-purpose GPU
computing approaches has been implemented in recent years, including GLSL6,
CUDA, and OpenCL7. Because of its flexibility and potential to utilize power of
GPU, we have opted for CUDA (Compute Unified Device Architecture) [20]—a
massively parallel computing architecture designed by Nvidia. In general, modern
GPU architectures are, capable of running thousands of threads in parallel.
In the context of CUDA, threads are grouped into so called thread blocks.
Threads within the block can cooperate among themselves using synchronization
primitives, shared memory, and global memory. Compared to the global memory,
the shared memory is considerably smaller and significantly faster and should be
used whenever possible. The advantage of the global memory is that it can be
accessed by all threads, whereas the shared memory is only visible to threads
of one block. The common CUDA work flow is to copy data from RAM to the
global memory of the GPU. All GPU threads can access and process the data
directly in global memory, or, more preferably, the data can be partitioned and
fetched into the shared memory to provide higher throughput for more complex
operations. It is also important that threads within the same warp follow the
same execution path; otherwise the thread divergence is introduced and divergent
execution paths are serialized, thus worsening performance.

3 Related Work

JPEG2000 standard allows for code-block level parallelism, which is rather coarse-
grained and because of intermediate data size requirements, it enforces use of
global memory on CUDA platform. Another option is stripe-level parallelism
in casual mode, which has lesser requirements on memory but results in worse
compression performance. Sequential nature of the context modeller requires
processing of one code-block/stripe by a single thread only; thus yielding (a) not
enough threads too utilize massively parallel architecture of GPUs and (b) code
divergence that introduces further performance penalty.The code-block level
parallelism has been used by the CUJ2K [9], an open source JPEG2000 project
which uses CUDA architecture and its programming model to implement all
compute intensive parts for GPU. A design similar to CUJ2K has been proposed
by Datla et al. in [8].

6 http://www.opengl.org/documentation/glsl/
7 http://www.khronos.org/opencl/
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4 Context Modeling Parallelization for GPU
Architectures

Compared to the coarse-grained parallelism contained within JPEG2000 standard,
the bit-parallel context modeling architecture proposed by us allows for indepen-
dent processing of all samples of a bit-plane as well as independent processing of
all bit-planes. Our design bypasses the three coding passes (SPP, MRP, CUP)
and the prescribed scan pattern, enabling direct coding by the four bit-coding
operations (ZC, MRC, RLC, SC).

For the purposes of the following explanation we define a code-block as two-
dimensional sequence of samples, γx,y (x = 1..m, y = 1..n), m and n being the
horizontal and vertical code-block dimensions respectively. A binary representa-
tion of a sample γ is a sequence [γP−1, γP−2, . . . , γ1, γ0] where P is image bit
depth. γp

x,y thus denotes a bit of the sample [x, y] on bit-plane p.
To be able to bypass the passes and to enable the direct coding, we introduce

two new state variables ρp
x,y, and τp

x,y as replacement to the original states. The
meaning of the two new state variables is as follows: ρp

x,y is shared by all the bits
of each pixel and ρp

x,y = 1 indicates the pixel γx,y became significant in either p
or in one of the previous bit-planes according to the processing order; τp

x,y = 1
indicates γx,y is going to become significant during SPP on the current bit-plane.

To be able to code a bit-plane p in parallel, the two new coding states need
to be precomputed before the actual coding. The ρp+1

x,y is computed in parallel
by examining the previous p+ 1 bit-planes; ρp+1

x,y = 1 iff there is a non-zero bit
above current bit, i.e.

∨P
p′=p+1 γ

p′

x,y = 1.
The τp

x,y is inductively computed in parallel as follows:
– τp

x,y = 1 ∀[x, y] where ρp+1
x,y = 0 ∧ γp

x,y = 1 ∧ at least one of 8 adjacent
neighbors has ρp+1 = 1

– In each further step τp
x,y = 1 ∀[x, y] where ρp+1

x,y = 0 ∧ γp
x,y = 1 ∧ ( at least

one of 8 adjacent neighbors has ρp+1 = 1 ∨ one of four preceding neighbours8

has non-zero τp).
Once both ρ and τ state variables are computed, the coding operations for

an arbitrary bit γp
x,y can be decided. In order to avoid execution path divergence

on GPU, we propose to serialize the coding operations execution manually and
to implement bit-to-thread mapping—i.e., the thread-blocks are of the same
dimension as the code-blocks; each bit-plane is processed in the following four
consecutive steps: MRC, RLC, ZC, SC. Note, that each coding operation is
executed on a bit-plane in parallel. The only constraint on bit coding independence
stems from diverging number of bits coded by the RLC operation. The RLC
is defined to code one to four bits in column and a prediction of the number
is virtually as expensive as the RLC coding itself. The only operation affected
by this is ZC, so we choose to perform RLC operations on current bit plane
before ZC. Although the new design we propose allows for parallelism among
bit-planes too, we do not exploit it because of restricted shared memory size.
8 The four preceding neighbors of [x, y] are as follows: [x, y− 1]; [x− 1, y− 1]; [x− 1, y];

[x− 1, y + 1].
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Original New

MRC σx,y = 1 ∧ ηx,y = 0 ρp+1
x,y = 1

RLC σx,y = 1 ∧ ηx,y = 0 ∧ y is a multiple of
4 ∧

∑x+1

i=x−1

∑y+4

j=y−1
σi,j = 0

ρp+1
x,y = 0 ∧ is in PN ∧(∑x+1

i=x−1

∑y+4

j=y−1
(ρp+1

i,j + τp
i,j) +∑y+3

j=y−1
γp

x−1,j + γp
x,y−1 = 0

)
ZC σx,y = 0 ∧ [in PN (for SPP) or ηx,y = 0

(for CUP)]
ρp+1

x,y = 0 (PN differentiate SPP from
CUP)

SC (SPP or CUP preconditions) ∧ γp
x,y = 1 ρp+1

x,y = 0 ∧ γp
x,y = 1 (τp

x,y differentiates
SPP from CUP)

Table 1. Overview of preconditions of coding operations.

Direct selection of coding operations based on the new state variables compared
to the original sequential state variables is summarized in Table 1. A detailed
equivalence proof is beyond the size limitation of this paper.

State information is also needed by the coding operations. To code the bits,
the original coding operations use σ, SC also exploits pixel sign information, and
MRC uses σ′ state. The new state variables are used instead as follows:
– MRC uses ρp+1 and τp of all the neighbors instead of σ; the σ′ is substituted

by looking for the position of the first non-zero bit on previous p+1 bit-planes.
– instead of σ, ZC uses ρp+1 of all neighbors and τp of four preceding neighbors

for bits belonging to SPP. ρp+1 and τp all neighbors and bit value of the four
preceding neighbors are used for bits belonging to CUP.

– instead of σ, SC uses ρp+1 of two vertical and two horizontal neighbors and
τp of the upper and the left side neighbor for bits belonging to SPP. ρp+1

and τp of two vertical and two horizontal neighbors and bit value of of the
upper and the left side neighbor for bits belonging to CUP.

– RLC uses no state information at all, both prior and after the transformation.
The described fine-grained parallel algorithm allows for processing individual

bits in parallel threads, resulting in high utilization of multi-processors on GPU.
Depending on chosen code block size, the data may be processed entirely in the
fast shared memory9.

5 Experimental Evaluation

Methodology. We implemented two benchmark sets focused on the EBCOT Tier-1
processing speed of selected single-threaded CPU implementations (OpenJPEG10,

9 Because of shared memory size limitations, older NVidia GPUs are limited to 16× 16
code blocks, while new NVidia Fermi architecture allows for larger code blocks.

10 http://www.openjpeg.org/
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JasPer11 and Kakadu12) and GPU implementation (CUJ2K13) together with our
GPU implementation nicknamed bpcuda. Except for Kakadu, all the implemen-
tations are open-source—this allowed us to add additional timer functions to
the source codes to obtain comparable results. Kakadu codec introduced two
limitations: (a) only the timer provided by the Kakadu authors could be used,
(b) the benchmarking of all the implementations comprises run-time of the whole
EBCOT Tier-1, not just the context modeller, to make results directly compa-
rable. Further insight into EBCOT Tier-1 components has been implemented
using the best open-source CPU and GPU implementations: JasPer and bpcuda.

Primary input image parameters affecting processing speed are size and bit-
depth. The image content itself also affects the runtime of EBCOT Tier-1; thus
we selected two extreme cases and one standard image for the first benchmark set:
a single-color image, a white-noise image, and Lenna image, a well-known picture
which is broadly used for benchmarking purposes. All three images were 8-bit
grayscale with the same size of 512×512 pixels. The second benchmark set was
focused on dependency analysis of processing time on image size: three images
with the same content (a real-world digital photography portrait) and different size
have been used. Images were 8-bit grayscale with the size of 1280×720, 1920×1080
and 4096×2160 pixels, corresponding to common size used in cinematography.
The images were preprocessed using 3-level reversible DWT transformation prior
to their processing in EBCOT. Both benchmarks were run 30 times for the same
configuration and codec.

Hardware and software configuration was as follows: CPU Intel Core i7 950 at
3.07 GHz, 6 GB DDR3 main memory, ASUS P6T6 WS Revolution motherboard,
GeForce GTX 285 GPU (with 30 multiprocessors, 240 cores, 16 MB of shared
memory, 2 GB of global memory). Software stack included Ubuntu Linux 9.04
with 2.6.28-15-server kernel, NVIDIA device drivers version 256.53, CUDA toolkit
3.1, and GCC version 4.3.3.

Experimental Results and Discussion. Table 2 summarizes results for both
benchmark sets. It can be seen that for trivial small image (single color 512×512
image), the CPU implementations outperform GPU ones—this is caused by the
overhead of memory transfers and low utilization of the GPU multi-processors.
For non-trivial images and namely for larger images, the computation time
prevails and the GPU implementations perform better compared to CPU ones.
For efficient bpcuda implementation, even processing of 512×512 non-trivial
images is approximately 2× better compared to the best CPU implementation.
Overall, 1.4–6.1 speedup can be observed for non-trivial images.

To provide deeper insight into the EBCOT Tier-1 components, the profiling
results of EBCOT Tier-1 of bpcuda and the reference CPU implementation
JasPer are compared. We used the Valgrind suite for the application profiling
JasPer and the combination of built-in CUDA timer functions for bpcuda. As

11 http://www.ece.uvic.ca/˜mdadams/jasper/
12 http://www.kakadusoftware.com/
13 http://cuj2k.sourceforge.net/



8 Matela J., Rusňák V., Holub P.

OpenJPEG JasPer Kakadu CUJ2K bpcuda

Single-Color 39.9 ± 2.9 11.5 ± 2.3 1.2 ± 0.4 14.1 ± 0.1 12.4 ± 0.1
Lenna 128.9 ± 29.1 80.6 ± 20.2 47.8 ± 3.9 101.0 ± 0.2 26.3 ± 0.1
White-Noise 185.4 ± 4.9 129.9 ± 3.3 61.8 ± 3.9 98.2 ± 0.2 30.2 ± 0.1

1280×720 364.8 ± 2.9 164.0 ± 0.1 145.6 ± 4.9 120.1 ± 0.3 63.5 ± 0.3
1920×1080 723.3 ± 1.7 369.3 ± 16.6 309.7 ± 4.6 258.6 ± 0.4 137.2 ± 0.5
4096×2160 2818.0 ± 7.8 1481.5 ± 1.3 1093.1 ± 4.6 914.1 ± 0.8 662.9 ± 0.3

Table 2. EBCOT Tier-1 processing time [ms] of different implementations. Lower time
means better performance.

shown in Fig. 2, the EBCOT Tier-1 is the most time-consuming part of the
encoding chain on CPU. From the profiling information and the measured times,
we can compare the runtimes of the single-threaded JasPer implementation and
our bpcuda. In the case of JasPer processing the HD image (1920×1080 pixels),
the context modeller occupies the 76 % (280.7 ms) and the arithmetic coder
consumes 24 % (88.6 ms) of the EBCOT Tier-1. When bpcuda processes the same
image, the context modeller consumes only 17 % (23.3 ms) and 83 % (113.9 ms)
is spent in the arithmetic coder. The overall speedup 1.4–5.3 of the EBCOT
Tier-1 is degraded due to yet not-optimized arithmetic coder. The speedup of the
context modeller itself is 12 times when compared to JasPer, the best open-source
CPU implementation. We consider the results of parallelized context modeller a
significant improvement, indicating that we succeeded in reducing the EBCOT
Tier-1 time-consumption mainly by re-formulation of the BPC part.

6 Conclusion and Future Work

In this paper, we have presented a novel approach to reformulating the context
modeller algorithm of the EBCOT Tier-1 process in JPEG2000 in a way that
enables an efficient implementation on GPU computing platform. The proposed
algorithm has been implemented using CUDA, showing significant performance
increase over existing CPU and GPU JPEG2000 implementations. In the future,
we will focus on acceleration of the MQ-Coder in the EBCOT Tier-1 process and
bit-stream formatting, thus finishing complete JPEG2000 acceleration for GPU
architectures.
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