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Abstract

Using internet for media-based real-time collaboration
has become widespread activity. In this paper, we present a
framework called CoUniverse, designed for building real-
time user-empowered collaborative environments to work
primarily on high-speed networks with true high-bandwidth
applications such as uncompressed high-definition video.
The system is designed for unreliable experimental infras-
tructures and therefore its operation relies heavily on self-
organizing principles—this is also useful approach for ex-
tending it to larger infrastructures. When media stream bi-
trate is comparable to capacity of the links, the additive
assumption no longer holds and the system needs to have
sophisticated scheduling. Concept of scheduler is a flexi-
ble plug-in for the CoUniverse framework and in this pa-
per, we present a formal scheduling model based on con-
straint programming including evaluation of its prototype
implementation. CoUniverse is designed to utilize exter-
nal media application, so that wide variety of existing tools
can be used. The whole system has been prototyped and
demonstrated, e. g., during international demonstration on
GLIF 2007 workshop.

1 Introduction

Collaboration among peer-humans always involved
some element of self-organization [1]. The same princi-
ple has also been followed by virtual collaborative environ-
ments to some extent. Majority of the systems is however
fairly static in a sense of reacting to different events occur-
ring both inside and outside of the system. E.g., media tools,
that are relying on multicast, are depending on its avail-
ability. H.323 tools are usually able to react to changing
available network bandwidth by adjusting media compres-

sion parameters—but if the central interconnecting MCU
breaks, there is usually not much to do except for terminat-
ing the call.

Recent development of systems like AccessGrid or
VRVS EVO (see Related work in Section 6) introduces an-
other level of autonomous behavior. Users can either in-
fluence some system parameters manually (e.g., choosing
between unicast and multicast in case of the AccessGrid)
which is followed by some automatic reconfiguration, or the
system attempts to react automatically to some events, e. g.,
by choosing another reflector for data distribution among
participants of a videoconference.

This approach is however insufficient for high-end col-
laborative applications, where the media streams are com-
parable with the capacity of the link and thus where im-
plicit additive assumption (“sending one more stream on
a link does no harm to the whole system”) is no longer
valid even on backbone network links. The whole sys-
tem requires more complex scheduling in order to achieve
reasonable performance or even to work at all. In order
to interact with advanced networking features like lambda-
services [2], much richer interfaces are also needed.

Another aspect of the self-organizing collaborative envi-
ronments is how much power should be given to its users.
In our previous work (e. g., [3]), we have argued in favor of
user-empowered approach to the largest extent that is pos-
sible. Proposed self-organizing system should also follow
this paradigm and utilize various schemes of organization
that don’t require any administrative privileges over nodes
or networks. However, this approach can be extended fur-
ther in a way that allows users to modify behavior of the
system—but it also raises the question what can be exposed
to the user in order to maintain the cooperative nature of
the whole system? And what should be the interfaces, that
would be acceptable and actually useful for the users?
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In this paper, we propose a framework for such collabo-
rative environments called CoUniverse. Basic design prin-
ciples used for proposing architecture of CoUniverse are
discussed in Section 2. Resulting proposed architecture in-
cluding overview of basic components and organization of
the network is described in Section 3. The system has been
prototyped including preliminary version of the scheduler
as discussed in Section 4. The system has already been
demonstrated during several events and its evaluation espe-
cially with focus on performance of current version of the
scheduler is in Section 5. Because the field of collaborative
environments is rapidly moving forward, we brief related
work in Section 6. The paper is concluded by tackling fu-
ture research tasks in Section 7.

2 Design Principles

CoUniverse design focuses on the following major areas:

1. self-organization of collaborative environment,

2. incorporation/encapsulation of external tools (even those
which don’t support the middleware directly),

3. continuous adaptation on changing conditions based on
built-in monitoring of applications, nodes, and network
links,

4. support for media streams with bitrate comparable to ca-
pacity of links (including advanced scheduling of data
streams to links),

5. visualization of the environment for the users to make it
understandable.

The CoUniverse is organized as one or more collabora-
tive Universes, where the actual collaboration takes place,
and a Multiverse, used for registration and lookup of clients
and Universes. The collaborative Universes are intended
to accommodate collaborative groups of limited sizes1 and
thus can implement functionality that may be hard or im-
possible to deploy at large. This includes features like so-
phisticated scheduling and aggressive monitoring of com-
ponents and network that provides basis for fast reaction to
problems that may occur. On the contrary the Multiverse
provides very limited functionality, it has to scale well with
respect to large number of participating nodes.

In terms of self-organization, the system should be ca-
pable of reacting to events in the system, namely to events
raised by users, nodes, and by the monitoring. It includes
applications being started/terminated, network links being
turned up/down, changes in link parameters (capacity, loss,

1Further information on importance, formation and dynamics of small
groups can be found in [1].

latency, jitter), nodes being added to and removed from the
Universe and nodes being reconfigured.

Because the CoUniverse is designed to integrate high-
bandwidth applications, it is necessary to interface with
services provided by advanced networks like lambda ser-
vices [2] or network resource allocators [4]. The CoUni-
verse includes notion of a lambda link: it is a link that may
be down because it is not allocated and may be allocated
prior to being used, provided there is an identity partici-
pating inside the collaborative Universe, that has sufficient
privileges to do so.

CoUniverse needs to have a scheduler to support ap-
plications with media streams comparable to network link
capacity. The scheduling objectives may vary: for sim-
ple interactive applications with fixed quality, it usually in-
cludes minimization of media distribution latency and pos-
sibly minimization of number of nodes involved in the net-
work. For more complex applications where quality is an
adjustable parameter, maximization of the quality may also
be included. Output of the scheduler has to include not only
the plan itself, but also a workflow describing how to im-
plement the plan, as there are many functional dependen-
cies. For instance, network links need to be allocated prior
to starting media applications that will send data over them.

The whole system should follow the user-empowered
paradigm as much as possible: there should be no need to
have administrative privileges especially over the network
and components. The system should be able to run entirely
in user space.

Programmability by Users In later stages, we would
like to study programmability and “debuggability” of the
environment—this is a topic which manifests in all self-
organizing systems that are not just very simple or single
purpose with one size fits all solution. This is different from
single purpose self-organizing environments like Skype or
file sharing networks. The limited size of Universe also
enables assumption that withing each Universe, users be-
have intentionally in a cooperative manner and thus we ig-
nore problems with intentional cheating, especially when
the environment becomes programmable. Even within this
scenario, impact of programmability needs to be studied
with respect to isolation of individual Universes. An ex-
ample of programmability, that is already present in Co-
Universe framework, is user-replaceable scheduler. User-
defined scheduler may take into account more or less in-
formation than the default one, depending on intents of the
community working inside the specific Universe. Another
example, that is rather very simple from this perspective as
it has close to zero impact on self-organization capabilities
of the network, is programmability of virtual floor as shown
for Isabel in [5].
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3 Proposed Architecture

3.1 Network Organization

As discussed above, CoUniverse is organized as one or
more collaborative Universes and a Multiverse. From the
networking point of view each Universe consists of a con-
trol plane used for control communication of all compo-
nents of the Universe and one or more data planes used for
actual data exchange between Universe components. Both
control plane and data planes are forming an overlay net-
works on top of actual physical network infrastructure.

Multiverse and control planes of collaborative Universes
are based on P2P networking substrate which provides nec-
essary robustness for the Multiverse and control planes.
Moreover a P2P substrate provides functions like clients
and Universes description, naming and addressing, lookups
and reliable data transfers.

Data planes of the collaborative Universes are based
on available physical networking infrastructure. The data
planes are optimized for maximum performance and min-
imum latency when transmitting data between the compo-
nents of the Universe. As data planes are virtual overlays
over physical networking substrate, they exist only in case
when there is an Application Group (see bellow) to utilize
it. The system is designed with user-empowered paradigm
in mind and thus it naturally relies on using application-
level media “routers” and distributors (reflectors, Active El-
ements [3]) for multipoint data distribution instead of being
dependent on network-native multicast2.

3.2 Collaborative Universe

Collaborative Universes, as shown in Figure 1, consists
of nodes, each of which runs Universe Peer client. Uni-
verse peers are providing a base for communication among
the Universe components, managing underlying node con-
figuration and steering media applications configured on the
very node. Nodes within the Universe are aggregated into
network sites, usually representing all nodes of a single site
participating in the collaborative Universe. To give more
precise definition, a network site is a set of collocated nodes,
where each site may have one or more users participating.

2Further discussion on why network-native multicast is not a user-
empowered solution and why its virtualization, e. g., using overlay net-
works, is needed, can be found in our previous work [3]. With mul-
ticast as a layer-3 network service, users are dependent on network
administrators—who usually consider multicast as second-class citizen
compared to unicast routing. This is also evidenced by shift to “reflec-
tors” in many collaborative communities: AccessGrid (http://www.
accessgrid.org/), ResearchChannel iHDTV (http://ihdtv.
sourceforge.net/), or Microsoft ConferenceXP (http://www.
conferencexp.net/). There are also other good reasons to imple-
ment overlay networks, e. g., for user-empowered NAT traversal for col-
laborative environments [6] or per-user processing.

Expressed using terminology defined below, typical prop-
erty of all nodes within one site is that there are no con-
sumers consuming data from producers from the same site
(this definition doesn’t include media distributors).

Each network node is configured by specifying (i) a list
of its physical network interfaces and their parameters, (ii) a
list of Media Applications which are installed on the node,
and (iii) a network site the node belongs to. Media Applica-
tion is any application which is used to create the collabora-
tive environment and which produces or consumes a media
stream (e. g., videoconferencing clients, audioconferencing
clients, data distributing Active Elements (AE) [7], etc.).
All Media Application producers (except AEs) are produc-
ing exactly one media stream which is then sent to exactly
one consumer.

Media applications are organized into Application
Groups (AG). AGs are then generalizing a particular func-
tionality of the collaborative environment (e. g., audio or
video conferencing, desktop sharing etc.). Media appli-
cations within an AG are orchestrated using Application
Group Controller (AGC). AGC is a service running on top
of at least one of the regular Universe peers. The purpose of
AGC is to collect node configurations from all peers within
the collaborative universe, assemble a topology of universe
data planes, invoke a scheduler to schedule media streams
of media applications to physical network links, create a
configuration for each media application based on sched-
uled media streams and finally send the configuration to-
gether with data plane topology to respective universe peer.
The universe peer in charge then adjusts the configuration of
steered media application so that it corresponds to respec-
tive scheduled media stream.

Scheduler within the AGC is invoked either manually
(especially for the first time) or automatically as a reaction
to a change Collaborative Universe state (e. g., new node ap-
peared, a node is not reachable using a particular network
link etc.).

3.3 Monitoring

Each Universe peer comprises monitoring of steered me-
dia applications, network links of physical networking sub-
strate which might be used to build a data plane for media
applications and network links that are actually part of some
data plane. Monitoring of the data planes network links is
more aggressive than monitoring of network links of gener-
ally available physical networking substrate since the links
of data planes are actually used for media applications data
exchange. At the same time, the links that are not used
in any of the Universe data planes need to be monitored
less frequently just so that the AGC eventually has a notion
of their state when some event in the Universe occurs and
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Figure 1. Scheme of the Collaborative Uni-
verse with its components. Different colors
for Media Application squares mean different
media applications.

those links might be used for some newly scheduled media
streams.

3.4 Visualization

Visualisation gives an overview of actual collaborative
Universe state to the user. Our goal is to provide a dynamic
visualisation displaying on one hand topology of the phys-
ical network between nodes of the collaborative Universe,
which might be used to build the data planes, and on the
other hand active (currently scheduled) media streams. Vi-
sualisation of active media streams is extremely useful es-
pecially when incorporating data from network and appli-
cations monitoring. Moreover users can also easily find out
whether the schedule chosen for a given network topology
has the desired effect (i.e., users can see, talk to, or collabo-
rate with each other in the way it was intended in a particular
collaborative universe).

3.5 Scheduling Network Model

In order to describe the scheduling algorithms imple-
mented into the CoUniverse framework, we need to intro-
duce formal notation first. In this section, only the notation
is described, while the actual constraints used for schedul-
ing are available in Section 4.

Let I be a set of all network interfaces, i ∈ I a network
interface. Furthermore let N be a set of all nodes in the
Universe, n ∈ N a particular node. Then node(i) = n

where n ∈ N is a node n with configured network interface
i.

Let l = (i, j) be a network link for i, j ∈ I . Then L =
I × I denotes a set of all network links and we denote a
particular network link as l ∈ L. We can define following
properties of a network link l: begin(l) = i such that l =
(i, j) ∧ i, j ∈ I is the originating interface i of the link l,
end(l) = j such that l = (i, j) ∧ i, j ∈ I is the ending
interface j of the link l. cap(l) denotes link capacity.

Finally, let P be a set of producers where p ∈ P is a me-
dia application producer, C a set of consumers where c ∈ C
is a media application consumer and M set of media distrib-
utors where m ∈ M is an Active Element (AE). Produc-
ers, consumers and media distributors are running on nodes
n ∈ N . Let consumers(p) where p ∈ P be a set of con-
sumers for a particular producer p. Thus

⋃
p

consumers(p) is

a set of all active consumers, i.e., those that have requested a
data stream from some producer. In the opposite direction,
producer(c) is the requested producer for consumer c. Fur-
thermore we define node(p) = n where n ∈ N ∧ p ∈ P ,
node(c) = n where n ∈ N ∧ c ∈ C and node(m) = n
where n ∈ N ∧ m ∈ M as a parent nodes of producer
p, consumer c and media distributor m. Media application
producer p ∈ P is producing a media stream with minimal
bandwidth min_b(p) and maximal bandwidth max_b(p).

4 Prototype Implementation

Prototype implementation of CoUniverse uses a current
stable version of JXTA [8] P2P framework to implement
CoUniverse control plane. Both Multiverse and collabo-
rative Universes are implemented as user name and pass-
word authenticated private JXTA peer groups separated
from public JXTA P2P network. Current implementation
of Multiverse lacks most of the functionality mentioned in
previous section and is used just for Universe registration
and static lookup.

Current prototype implementation of CoUniverse uses
just one AGC to orchestrate all applications within the col-
laborative universe. We are using a single AGC to simplify
the implementation and to avoid synchronization issues be-
tween several AGCs running at the same time. We imple-
mented an interface for steering of generic media applica-
tions. In the current implementation of CoUniverse, the
Universe Peer is able to control a variety of UltraGrid fla-
vors [9] for both uncompressed and compressed full 1080i
HD video transmissions—compared to description in [9],
bitrates from 250 Mbps to 1.5 Gbps are now also supported,
based on several compression and bitrate reduction algo-
rithms. Amongst other supported applications are: Vide-
oLan Client3 for HDV video transmissions, VIC4 for low

3http://www.videolan.org/
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bandwidth videoconferencing (used as a fallback for build-
ing of the collaborative environment) and RAT4 tool for au-
dio transmissions.

Media streams scheduler was implemented as constraint-
based solver using a Choco solver library5. The solver
searches for a solution which is a mapping of media streams
on network links. Formally we are looking for set of stream
links SL = L× P . Scheduler plans the stream links so that
(l, p) = 1 where (l, p) ∈ SL for a stream link that is planned
to be actively used for data distribution in the Universe and
(l, p) = 0 where (l, p) ∈ SL for unused stream link. For
sake of brevity in the text below, we say that stream link
(l, p) exists iff (l, p) = 1.

Speaking in terms of network model given in previous
section the constraints for the solver look as follows:

• Stream links constraints

– ∀(l, p) ∈ SL such that node(begin(l)) = node(p)
holds min_b(p) < cap(l)
Parent network link l of the stream link must have suf-
ficient capacity to transmit the media stream p.

– ∀(l, p) ∈ SL. ∃p ∈ P such that node(p) =
node(begin(l)) ∨ ∃m ∈ M such that node(m) =
node(begin(l))
Each stream link must have producer or media distrib-
utor on its beginning node.

– ∀(l, p) ∈ SL. ∃c ∈ consumers(p) such that node(c) =
node(end(l)) ∨ ∃m ∈ M such that node(m) =
node(end(l))
Each stream link must have a consumer receiving data
using the stream link.

• Producer constraints

– ∀p ∈ P .
∥∥ {c ∈ C | c ∈ consumers(p)}

∥∥ > 1 ⇒
¬∃(l, p) ∈ SL such that node(p) = node(begin(l)) ∧
node(c) = node(end(l))
More than one consumer for a particular producer
means that there cannot be any direct stream link be-
tween consumers and respective producer as the pro-
ducer has to send the media stream through at least one
media distributor.

• Consumer constraints

– ∀c ∈
⋃
p

consumers(p) exists just one (l, p) ∈ SL such

that node(c) = node(end(l))
Media stream for each active consumer is received us-
ing exactly one stream link.

4http://mediatools.cs.ucl.ac.uk/nets/mmedia/
5http://choco-solver.net/

– ∀c 6∈
⋃
p

consumers(p) exists no (l, p) ∈ SL such that

node(c) = node(end(l))
There are no media streams for any of inactive con-
sumers (i.e., those that hasn’t requested any data from
any producer).

– ∀c ∈
⋃
p

consumers(p). ∃p ∈ P such that ∃(l, p) ∈

SL where node(p) = node(begin(l)) ∧ node(c) =
node(end(l)) and p = producer(c).
or
∀c ∈

⋃
p

consumers(p). ∃m ∈ M such that ∃(l, p) ∈

SL where node(m) = node(begin(l)) ∧ node(c) =
node(end(l))
Each active consumers has to be covered by the re-
quested producer either directly or through some media
distributor.

• Data distribution tree constraints

– ∀p ∈ P .
∥∥ {c ∈ C | c ∈ consumers(p)}

∥∥ = 1 ⇒∥∥ {(l, p) | (l, p) ∈ SL ∧ (l, p) = 1}
∥∥ ∈ [1,

∥∥M
∥∥ + 1]

Number of used stream links for producers with only
one consumer is greater or equal to number of produc-
ers. That means data may go either directly, or through
some forwarding media distributor (typically in case
that direct sending is not available for one reason or
another). Number of stream links obviously must not
exceed number of all the media distributors in the net-
work plus one.

– ∀p ∈ P .
∥∥ {c ∈ C | c ∈ consumers(p)}

∥∥ > 1 ⇒∥∥ {(l, p) | (l, p) ∈ SL ∧ (l, p) = 1}
∥∥

∈ [
∥∥consumers(p)

∥∥+1,
∥∥M

∥∥+
∥∥consumers(p)

∥∥+1]
Minimal number of used stream links is greater or
equal to number of consumers for give producer plus
one for multipoint data distribution. Upper bound num-
ber of consumers for given producer plus number of all
the media distributors plus one.

• AE constraints

– ∀m ∈ M exists just one p ∈ P for all (l, p) ∈ SL
such that node(m) = node(begin(l)) ∨ node(m) =
node(end(l))
A single media distributor instance can only serve for
distribution of data from a single producer.

– ∀m ∈ M . m distributes data from p =⇒ ¬∃c ∈
consumers(p) such that node(m) = node(c)
Media distributor is not scheduled together with an-
other consumer for the same producer on a single node.

– ∀m ∈ M holds∥∥ {(l, p) ∈ SL | node(m) = node(begin(l))}
∥∥

≥
∥∥ {(l, p) ∈ SL | node(m) = node(end(l))}

∥∥
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There has to be at least the same number of egress me-
dia streams as ingress media streams for particular AE.

• Link capacity constraint

– ∀l ∈ L,∀(l, p) ∈ SL holds
∑
p

max_b(p) · (l, p) <

cap(l) where (l, p) = {0, 1}
That is bandwidth requirements of all the scheduled
stream links (l, p) must not exceed capacity of the link
l the stream links are bound to.

Another available constraint is based on elimination of
intra-site links (i.e., links (l, p), where node(begin(l)) and
node(end(l)) belong to the same site). This can speed up
scheduling up to 10× for many scenarios, but it may also
disable useful solution, e. g., those where media distributors
are collocated in the same site with producers and/or con-
sumers. In case of need, this can be however circumvented
by moving media distributors to a separate site.

Based on its settings, the solver can return just a sin-
gle first match solution or a solution optimized for a mini-
mal media streams distribution latency between the nodes.
Based on the network topology and configured media ap-
plications the solver may also return a number of equivalent
(and even optimal) solutions. In such case the first solution
is used and deployed within the collaborative universe.

Because Java lacks any reliable tools for network con-
nectivity monitoring, we have implemented a custom client-
server based ping tool. The tool measures not only avail-
ability of peers through the native network, but also network
round-trip time, which is an important parameter for latency
minimization in our scheduler model. Each universe peer
is running the server part implicitly and then is pinging all
other known universe peers. In section 3, we mentioned that
we need more aggressive monitoring of those network links
which are part of some data plane and are used for media ap-
plications data exchange than of those network links which
are just generally available in the network substrate. This is
implemented by a priority and default classes of links which
are monitored. A ping client is invoked each second for
each network link with scheduled media stream (which is
put into the priority class) and each 10 seconds for network
links in the default class.

In our prototype, we implemented a semi-static visual-
ization (see Figure 2) of the collaborative Universe. The
visualization is updated with every new scheduling of me-
dia streams within the Universe. Currently the visualiza-
tion shows only active scheduled media streams with some
rudimentary description and static parameters of the media
streams. However, even such a simple visualization is help-
ful to check that the collaborative Universe is started up and
configured as was intended to.

Figure 2. Visualization of scheduled stream
links in CoUniverse GUI during GLIF 2007
demonstration.

Java sources and JAR archive of CoUniverse prototype
implementation are downloadable from https://www.
sitola.cz/CoUniverse.

5 Prototype Implementation Evaluation

Performance and scalability of the CoUniverse environ-
ment heavily relies on the scheduler, therefore we have
performed a number of simulations with various network
topologies and data distribution schemes and measured the
time necessary to obtain a schedule for given network topol-
ogy and distribution scheme.

We chose a full mesh m:n, 1:n tree and direct 1:1 data
distribution schemes as a test cases for evaluation of sched-
uler performance and scalability. Network topologies were
given by the data distribution schemes and number of sites
in the collaborative universe. The m:n distribution scheme
test case topology was generated so that each site had one
node with UltraGrid media application producer a node
with UltraGrid consumer for each other site and a node with
AE. This scenario simulates full-mesh collaboration among
peers. The 1:n tree distribution test case was generated so
that one site had a UltraGrid producer node and UltraGrid
consumers node for all other sites in the topology, every
other site comprised of one UltraGrid producer node and
one UltraGrid consumer node. This scenario is realistic,
e.g., for virtual classroom type environment, where the lec-
turer gives his talk in multiple remote rooms in parallel. A
corresponding number of AE nodes was generated with re-
spect to the fact that one AE can replicate 1,5 Gbps media
stream from an UltraGrid producer to at most 6 UltraGrid
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consumers where 10 Gbps network link is available. Finally
direct 1:1 data distribution was a simple test case with gen-
erated pairs of UltraGrid producer nodes and UltraGrid con-
sumer nodes, where each UltraGrid consumer was receiving
the media stream from a particular preconfigured UltraGrid
producer. This is sort of artificial scenario to show scala-
bility limits. All nodes had one 1 Gbps and one 10 Gbps
network interface configured in all three test cases.

All measurement results were obtained on a 2 GHz Pen-
tium M machine with 1 GB of RAM running a Linux oper-
ating system. A 1.2.05 version of Choco solver library was
used. Table 1 shows excerpt of measured times necessary
to find feasible plans for above mentioned test cases with
Choco solver set up to return all feasible solutions while Ta-
ble 2 shows corresponding times measured for Choco solver
set up to return just the first feasible solution and exit im-
mediately. The results are summed up in graph 3 and 4
showing that Choco solver scales reasonably for 1:n and di-
rect 1:1 data distribution schemes with up to 25 nodes in
the network topology. The worst scheduler performance
was observed for m:n data distribution scheme. For such
a scheme we were able to obtain a schedule in a reasonable
amount of time for up to 12 nodes aggregated into 3 sites.

Table 1. MatchMaker evaluation (all feasible
solutions)
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m:n 2 6 60 6 2 0,178
m:n 3 12 264 12 3 0,510
m:n 4 20 760 20 4 1970,540
1:n 2 5 40 5 1 0,181
1:n 4 11 220 11 1 0,360
1:n 6 17 554 17 1 0,753
1:n 7 20 760 20 1 1,110
1:n 8 24 1104 24 2 8,914
1:n 10 30 1740 30 2 37,299
1:n 12 36 2520 36 2 105,308
1:1 2 4 24 4 0 0,187
1:1 5 10 180 10 0 0,333
1:1 8 16 480 16 0 0,979
1:1 11 22 924 22 0 2,009
1:1 14 28 1512 28 0 3,344
1:1 17 34 2244 34 0 6,160
1:1 20 40 3120 40 0 10,161
1:1 23 46 4140 46 0 21,661

Figure 3. Time to find all feasible solutions for
given network topology.

Table 2. MatchMaker evaluation (first feasible
solution only)

D
is

tr
ib

ut
io

n
sc

he
m

e

Si
te

s

N
od

es

N
et

w
or

k
lin

ks

M
ed

ia
ap

pl
ic

at
io

ns
A

ct
iv

e
E

le
-

m
en

ts

Sc
he

du
lin

g
tim

e
[s

]

m:n 2 6 60 6 2 0,308
m:n 3 12 264 12 3 0,447
m:n 4 20 760 20 4 1986,047
1:n 2 5 40 5 1 0,169
1:n 4 11 220 11 1 0,285
1:n 6 17 554 17 1 0,758
1:n 7 20 760 20 1 0,924
1:n 8 24 1104 24 2 3,747
1:n 10 30 1740 30 2 17,518
1:n 12 36 2520 36 2 69,907
1:1 2 4 24 4 0 0,187
1:1 5 10 180 10 0 0,343
1:1 8 16 480 16 0 0,862
1:1 11 22 924 22 0 1,900
1:1 14 28 1512 28 0 3,382
1:1 17 34 2244 34 0 5,745
1:1 20 40 3120 40 0 9,727
1:1 23 46 4140 46 0 21,637

Another important metrics is the time necessary to estab-
lish the collaborative environment. Therefore we measured
the time relative to Universe Peer startup needed to connect
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Figure 4. Time necessary to find only first fea-
sible solution for a given network topology.

to a Universe. We observed three different cases where in
the first one Universe Peer was connecting to AGC running
on a local machine, seconds a Universe Peer was connecting
to an AGC running in a local network and finally we mea-
sured a time necessary to connect to AGC6 running on a
node in our laboratory network for a Universe Peer running
on a network node at Louisiana State University. Measured
times necessary for Universe Peer to connect to AGC and
to get a first response from AGC are showed in Table 3.
Longer connection times in later two cases were caused by
longer time needed to lookup the AGC in the Universe using
the JXTA control plane. All measurements were obtained
using version 2.4.1 of JXTA protocol implementation.

Table 3. Connection times and response time
for Universe Peer and AGC.

local node local net remote net
AGC AGC AGC

connect to AGC 26,6 s 30,2 s 30,3 s
response from AGC 27,4 s 31,2 s 34,4 s

5.1 Demonstrations

Prototype implementation of CoUniverse was evaluated
during a demonstration at GLIF 2007 meeting in Prague
in September 2007. CoUniverse was used to orchestrate

6In order to connect to AGC Universe peer must connect to given JXTA
super-peer, authenticate into Universe peer group, obtain AGC advertise-
ment containing AGC identification within the JXTA network and send
local node configuration to AGC.

a network of twelve nodes using high quality, high band-
width HD video transmissions and audioconferencing to
create multipoint-to-multipoint collaborative environment
connecting three sites (Louisiana State University, USA
with Charles University, Czech Republic and Academia
Sinica, Taiwan).

Creating such a collaborative environment means in
praxis configuring and steering of more than two dozens of
media applications and Active Elements to bring up media
streams connecting all sites. Configuring all media applica-
tions and AEs at dozen of machines presents huge amount
of manual work which is overwhelming for users of such
environment. Moreover there must be at least one user of
the collaborative environment having precise idea how to
create the media streams between all media applications and
AEs based on knowledge of available physical network sub-
strate between all participating sites. Last but not least the
users are not able to ensure resiliency and fast recovery of
such environment in case of any network, node or media
application failure, because it might mean even newly con-
figuring of all nodes and applications.

Both issues were well addressed deploying CoUniverse.
Although creating node configurations for all nodes in the
Universe is initially quite time consuming as well, users
have to create just local configurations describing network
interfaces of the local machine and location of local media
applications.

The system was also demonstrated during SuperCom-
puting’07 event in Reno, NV in November 2007.

6 Related Work

As mentioned in the introduction, some extent of self-
organization is usually built into the all but the simplest col-
laborative tools. H.323 and SIP tools that are considered
a sort of industrial standard as a videoconferencing plat-
form can accommodate changes in available link capacity
by changing compression parameters of media streams. Is-
abel [10] platform has similar properties by means of flow
server and also features programmable floor control [5],
which is however on the level of GUI programmability only.

Probably closest to CoUniverse idea is currently VRVS
EVO [11], which allows self-organization of the collabo-
ration network. It is however a closed system that doesn’t
incorporate external tools and namely it can’t cope with me-
dia streams that have bandwidth requirements comparable
with link capacity. From user perspective, VRVS EVO can
be viewed as a system similar to Skype.

Another important videoconferencing platform is Ac-
cessGrid [12], which doesn’t have any self-organizing prop-
erties. The fail-over mechanisms are only very simple and
have to be initiated by the user, e. g., by selecting unicast
media transport instead of multicast. Compared to the other
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systems, it may seem simple, but it follows several of Co-
Universe design principles which the other systems are not
compliant with: user-empowered paradigm at least for the
collaborative system components (which are open-source
and may be installed by end-users arbitrarily) and it is also
extensible and incorporates external applications.

7 Conclusions and Future Work

In this paper, we have designed a framework for ad-
vanced self-organizing collaborative environments called
CoUniverse. The system is targeted to incorporating high-
end multimedia tools while utilizing advanced high-speed
networks with their specialized services.

Even though we have already implemented and success-
fully demonstrated a prototype of the CoUniverse, it still
leaves many unanswered questions stated in the introduc-
tion to this paper. One big issue is optimization of the
scheduling algorithms in order to support larger infrastruc-
tures. It should also better utilize knowledge of network
structure, even if it is only partial. We want to include
scheduling for native multipoint applications. Another is-
sue that needs to be further investigated is programmabil-
ity of the whole system by its users. This is also impor-
tant in the context of the scheduler, which may need to be
able to incorporate user-defined constraints on its behavior.
From practical perspective, it needs to be integrated with
a some more sophisticated monitoring framework in order
to obtain more precise information from the environment,
namely from the underlying networking layer (e. g., better
capacity and network topology estimates).

Another topic which is of interest is providing some role-
based security scheme for the CoUniverse, as current pro-
totype has only very limited security mechanisms incorpo-
rated.
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