
Transparent Security for Collaborative Environments
Eva Hladká, Daniel Kouřil, Michal Procházka, Luděk Matyska, Petr Holub

CESNET z.s.p.o.,
Zikova 4, 160 00 Praha 6,

Czech Republic
{first.last}@cesnet.cz

Abstract—Current collaborative tools are often not able to
profit from existing systems for user management. It is therefore
necessary for collaborative systems to administrate their users
using their own solutions, which may not be adequate in terms of
scalability or security. Many users may also experience problems
working with authentication credentials (e.g. digital certificates)
employed by collaborative systems. In this paper, we propose
a general framework to provide easy-to-use yet secure access to
collaborative systems, which offers a general middleware layer to
accommodate various types of collaborative tools. The framework
utilizes the emerging model of federations, which allows to pro-
vide a user-friendly means of logging in to a collaborative system
as well as a solid basis for specifying access control policies. The
framework handles all security aspects in a transparent way
without requiring the users to perform complicated tasks. Using
user attributes maintained in the federation, it is also possible
to implement efficient and dynamic group management of the
collaborating users.

I. INTRODUCTION

The need to efficiently collaborate is very crucial, especially
for people distributed accross large geographical distances or
organizational boundaries. Nowadays we have communication
networks allowing us to overcome distances but we are still a
long way from a full-fledged virtual collaborative environment.
In recent years, most effort in this area has been targeted
at different aspects of human–machine and human–human
interactions, with the underlying middleware receiving little
attention. However, the middleware has a decisive role in
acceptance (or rejection) of the system, because difficulties
in infrastructure set-up can preclude its use. In this paper,
we present a federation-based approach to security middle-
ware, which allows practically transparent set-up and use
of a security layer beneath the collaborative environment.
This work is based on our long experience with supporting
collaborative environments for differing user groups with a
rather conservative approach towards complex computerized
solutions.

Let’s start with a broad definition of a collaborative environ-
ment. The basic definition of such an environment is a set of
tools supporting work processes and interactions among users.
We will, however, use a more detailed definition, namely that a
collaborative environment is a set of software/hardware system
tools allowing people to communicate and share applications
in real time synchronously with required security. This defi-
nition is still rather general, but it reflects the complexity of
collaborative environments. From a technical point of view an
ideal instance of a collaborative environment can be divided

into two layers. The bottom layer is the middleware and the
top layer consists of concrete client tools. The communication
tools distinguish different collaborative environments and are
specific to particular collaborating groups. The middleware, on
the other hand, provides a functionality required by all collab-
orative systems and its principles (or even implementations)
are shared among different collaborative environments.

The primary roles of the middleware in a collaborative
environment is to realize multipoint connectivity, to provide
user and group management and to guarantee security, i.e.,
authorization, authentication, and at least some basic account-
ing. Most of the functionality of middleware services should
be transparent for users.

Multipoint connectivity would ideally be delegated to the
underlying network. However, as multicast is not a reliable
network service (it uses the unreliable UDP protocol) and is
still not widely available, the collaborative systems usually
provide their own overlay network to guarantee the multipoint
connectivity. Since a full mesh, where all partners directly
communicate with each other, is very inefficient in terms
of consumed network capacity (and also client processing
power), usually some star-like overlay is created. In the
H.323 world MCUs (Multipoint Control Units) are used. Other
systems use other (hardware or software) reflectors as well.

The security aspects may also be addressed at the network
level. In fact, the network middleware is primarily interested
in providing a security framework for applications running on
top of the network. The major disadvantage of the classical
network middleware approach is its lack of user friendliness—
its use expects a rather high level of technical knowledge and
experience. This is even truer for user and group management,
where user orientation is necessary for acceptance of the
system.

After several years of sometimes painful experience with
supporting collaborative environments for mostly conservative
user groups, we focused our research on their middleware,
emphasizing transparency and user friendliness (the user-
centric approach). Our main goal is to design and implement
a middleware which will ensure easy set-up of collaborative
sessions supporting secure communication among users. The
middleware should also provide easy membership manage-
ment functionality. Our proposed solution is based on a
federative approach, which removes most of the problems
encountered by more classical security and group management
solutions.



In the next section we compare the most frequently used
collaborative systems from this point of view.

II. RELATED WORK

Some form of authentication and authorization, even though
sometimes fairly implicit, is present in the vast majority of
collaborative systems. In this section, we will discuss the
nearest competitors to our approach—AccessGrid—and also
a few other widespread systems with less sophisticated au-
thentication and authorization support: Skype, VRVS, VRVS
EVO, and WebEx.

Skype [1] has become a very attractive option for many
users, because of its capabilities to penetrate firewalls and
work behind NATs. Though the internals of its security model
are proprietary and very obscure [2], [3], the basic approach is
pretty straightforward: the users register with the Skype server
in order to get their account protected using a password. The
authorization is handled intuitively in the sense of common
telephony systems: the user calls another user (one or more
depending if the calls are limited to point to point or if there
is a multipoint call), and the user being called authorizes
or refuses the calling party. This model is sufficient here as
the Skype does not assume complex multi-party collaborative
sessions.

Another well-known and widely used collaborative environ-
ment, created originally for the high-energy physics commu-
nity, is the Virtual Room Videoconferencing System (VRVS)1.
The successor of VRVS, called Enabling Virtual Organizations
(EVO)2, is based on the self-organization of a system of
reflectors. Both use authentication based on user registration
with the VRVS system, with a password as a credential. Users
are organized in virtual rooms, the rooms are either public (i.e.,
available for anybody who is registered with the VRVS) or
protected by a password shared among the room participants
(the so called Meeting password in EVO).

WebEx3 is a commercial portal-based system. It is also
provided as a service, therefore users communicate through
the service provider’s servers. A simpler version of WebEx
does not support complete group communication, as only one
video and four audio streams are permitted simultaneously.
Each group needs a moderator to assign video and audio
channels (in the case of larger groups), the group is protected
by a shared password. No client software is installed on users’
machines, only a web browser is required.

On the other side of the collaborative tools spectrum, there
is an experimental open extensible system called AccessGrid
(AG) [4], [5]. Since its version 2, it features service-oriented
architecture for collaborative environments based on Grid ser-
vices [6]. AccessGrid uses X.509 certificates for authentication
purposes. It supports both high-quality certificates from trusted
CAs and also the so-called “anonymous certificates” from Ac-
cessGrid CA. The “anonymous certificates” were introduced
after the first releases as it turned out that ordinary AG users

1http://www.vrvs.org/
2http://evo.caltech.edu/
3http://www.webex.com/

were having serious problems with obtaining certificates from
a trusted CA, thus being discouraged from using AccessGrid.
The authorization is implemented as part of a Venue server
using a role-based approach [7]: each user may have a number
of roles, thus enabling him or her to take certain actions. The
roles are assigned by the Venue server administrator(s).

In our previous work [8] we developed a collaborative
environment based on MBone Tools, our own modular user-
empowered UDP packet reflector and security layer based
on a VPN solution. Users make secure connection to the
VPN server and only data related to the collaborative session
are transferred through the VPN tunnel to the server. Au-
thentication is based on X.509 certificates provided for VPN
authentication, and authorization is implemented using a list
of allowed DNs listed at the VPN server. No advanced group
management is supported, a group is simply a list of DNs.

III. CURRENT MODELS FOR MANAGEMENT OF
COLLABORATIVE GROUPS

All the collaborative systems just described use a centralized
service for user management. The service stores information
about user accounts and credentials. In most cases, the cre-
dentials are username and password, in others—the AG and
the VPN solution—they are based on the user’s X.509 certifi-
cate [9], being part of a Public Key Infrastructure (PKI) [10].
The username/password credentials are usually unique for the
particular collaborative environment—users are discouraged
from using the same password for several different services.
With the X.509 credentials, users must remember a passphrase
that protects the private key file; sometimes users are encour-
aged to have separate X.509 credentials for these services, to
lower the risk of compromising them. In either case, users are
required to maintain and/or remember new specific credentials.

Group management is usually built on the top of individ-
ual user credentials. The group management defines who is
allowed to participate in a particular collaborative session.
Again, most systems impose their own group management
system (if any).

A. Common drawbacks in used models

All the collaborative environments mentioned require user
registration and some type of custom user credentials for
access to the collaborative services. Skype, AccessGrid, VRVS
and our VPN solution require installation by the users. Both
the registration and the installation makes the collaborative
environment hard to use by an ordinary user. Deployment
in most institutions brings problems with firewalls, NATs,
restriction policies and/or non-cooperative IT staff.

User management in current systems presents a large
overhead and also poses a potential security risk. Since the
collaborative environments mentioned employ their own user
management systems they require users to register before they
join any service in the collaboration. The registration consists
of filling in a form in which users give information about
themselves, but the registration system can do very little to
verify that the information is correct. Also there is only a very



limited way to verify that the information remains current,
leaving its maintenance to the users themselves. This arrange-
ment could lead to unauthorized access to information or its
leakage. Systems based on an existing PKI could leverage
the proper identification of the users, but more information is
usually needed to make appropriate access control decisions.
Also, getting and using PKI credentials often present a high
barrier for ordinary users.

As mentioned before, most collaborative systems utilize
a username and password to authenticate users. Since the
systems are not integrated with other environments, these
credentials are unique for the systems and have to be dis-
tributed to the end users. Distribution of these credentials is
not always properly secured, so they may be intercepted during
the transmission by an attacker who could use the credentials
to gain unauthorized access to the collaboration.

Collaborating users often need to establish a group to work
together on a particular problem. It is highly desirable for
the group maintainer to be able to assign a policy specify-
ing who is a member of the group. Due to lack of other
information about users, current systems usually only allow
the group administrator to specify an exact list of authorized
usernames or use a shared password. Both these methods have
significant flaws. In the former case it is necessary to know
the list of users in advance, which makes group management
inflexible. The latter approach requires distribution of the
password (which again might be subject to attack) and does
not provide any easy method for revoking authorization once
it has been distributed. These issues make it impossible in
practice to create collaborative groups dynamically on demand
in a controlled and secure way.

It is possible to address most of the issues described in this
section using the federation model. In the rest of the paper we
propose a general framework built upon an existing federation
and describe how it allows us to cope with the issues.

IV. THE FEDERATION MODEL

A federation is an infrastructure connecting user manage-
ment systems from different institutions to provide standard-
ized access to information about users maintained by their
systems. Federations provide a bus layer to which systems
for user management and end applications can connect and
share authentication and authorization data. Every organization
participating in a federation manages its users by a local user
management system. An Identity Provider (IdP) service is built
on the top of each local user management system, providing a
standardized interface to access authentication information and
other attributes about the users. Any party in the federation
can get this information by calling the IdP service using a
standardized protocol. End services (Service Providers—SP)
are able to process the data returned by the user’s home
IdP and use them to make access control decisions. Before
users are allowed to use a service, they have to present a set
of attributes issued by their home IdP. These attributes are
provided to users or to a service working on their behalf upon
proper authentication of the user with the IdP.

The major advantage of using the federation model lies in
the fact that users authenticate to arbitrary services with their
home institution’s credentials (which may be a username and
password, a digital certificate, a hardware token, or something
else.). Every SP in the federation can use this mechanism
transparently from the user’s point of view. There is no
need to introduce new credentials for every new service or
to synchronize existing credentials (like passwords) among
different services. Having no additional credentials also means
there is no need to distribute them among the users. Such an
arrangement not only eases credential management but also
makes it more secure, as users are only required to maintain
one piece of authentication information. Similar functionality
is offered by PKI. However, it is too difficult and time
consuming for most users, especially if their home institution
does not already have an extensive network of registration
authorities and properly trained user support. The federation
model is undoubtedly more acceptable to the users, as it is not
tied to any particular authentication method and institutions
can decide the most appropriate method for their users.

Upon proper user authentication, the IdP provides a set
of attributes that represent additional information about the
user. The attributes are very often encoded using the Security
Assertion Markup Language (SAML) [11]. In this way the
home institution provides information that can be used, e.g.
for specification of a group of users without explicitly naming
them. For example, it is possible to create a collaborative
session for students enrolled on particular course at different
institutions (provided that information about the courses a
person is enroled on is made available as part of the attributes).
The whole communication can be logged for future auditing,
so the session administrator can learn who participated in
a session without needing to be given this information in
advance, in order to authorize access.

Enhanced privacy is a potential side effect of the above-
mentioned use of attributes. The IdP could provide only
attributes, not a precise user identity (i.e., it could provide
the information that a person is enrolled on course identified
as CS102 without revealing his or her name or other unique
identification). The attributes are sufficient for a service to
make an authorization decision, however the precision of audit
trace is lost (while the privacy of the user is enhanced). In the
event of abuse, the home institution is still able to identify
the user from their local logs. This approach is interesting
if we do not want to reveal the individual user’s identity
to a collaborative session administrator, e.g., in some semi-
anonymous survey.

V. FEDERATION BASED COLLABORATIVE ENVIRONMENT
MANAGEMENT FRAMEWORK

We have designed a framework making use of the federation
model, which allows us to set up and maintain a collaborative
group in a secure and rapid manner. The framework resides
in the middleware layer, providing a security infrastructure for
any collaborative tools used by the end users. The framework
is primarily aimed at our solution based on VPN tunnels and



MBone tools, but is general enough to be used with other
collaborative tools, too.

The framework provides a solution to manage users and
groups and allows users to authenticate using the standard
authentication credentials that they use to access services
at their home institution. The framework removes any need
to independently maintain user records or to distribute new
credentials across the collaborating community. It operates
on the middleware level, making it possible to move the
functionality for the user management and authentication
and authorization from the application to the bottom layers,
reducing the complexity of the applications.

Fig. 1. Schema of the framework

An overall schema of the framework is depicted in Fig. 1.
The framework addresses two very crucial aspects necessary to
maintain a collaborative environment: access control of users
and group management, both based on a strong authentication.
Authentication must not add additional barriers for the users,
while being as general as possible. A simple approach to
authentication in such an environment would be to let users
authenticate directly against the collaborative server using his
or her home password. By pretending to be the users, the
collaborative server could verify the credentials against the
users’ home IdP. This approach would be simple for the
users as they would not need any additional tools on their
side. On the other hand it suffers from severe shortcomings
and weaknesses. Not all institutions use a username/password
pair to authenticate their users, also adapting the collaborative
server to support new authentication method is usually a
complicated or even impossible task. Moreover, this approach
requires the collaborative server to verify the passwords, which
requires a much higher level of trust in the server and its ad-
ministrators, because a malicious or compromised server could
easily collect users’ passwords and misuse them later. In view
of these drawbacks we decided to introduce a new concept
of logging into the collaborative environment, which makes
the authentication step general without imposing additional
barriers to the users. The logging phase is invoked explicitly by
the user at the beginning of a work session and is responsible
for primary authentication. After a user successfully logs in,
he or she receives a short-term credential that can be used to
access the collaborative environment. Management and usage
of the credential is hidden to the user and is performed by our
framework.

A. Logging into a collaboration

We have chosen PKI as the primary authentication mecha-
nism for accessing a collaborative system. PKI is widely used
and supported by a rich variety of tools and applications and it
is a native authentication mechanism for AccessGrid and our
VPN/MBone solution. We do not expect users to already have
a certificate from some trusted certification authority (CA) or
even any experience of the certificate use. Instead we make
the certificate generation be part of the explicit log-in step. In
order to allow easy access to certificates, we plan to establish a
federative CA that works as a service provider in an existing
federation, which issues certificates on the fly to users who
can authenticate using their home credentials. Apart from the
usual information stored in an ordinary public-key certificate,
the certificates issued by the federative CA also contain a
set of attributes assigned to the user by the identity provider.
These attributes can be later used to perform access control
decisions by the server, while the certificate provides a suitable
container to transport them between the user and the server.
We are preparing user tools that can be used to obtain such a
certificate in a user-friendly manner.

Once received from the CA, the certificate, along with the
corresponding private key, is stored on a local disk so that they
could be taken by the application that arranges connection to
a collaborative service. The private key is stored unencrypted
and only secured by the file system permissions, so that only
its owner and his or her applications are able to read the
file containing the key. In order to achieve a single sign-on
functionality, yet to retain a reasonable level of security, we
suppose the certificates will only be short-lived, with a typical
lifetime of one day. Thus, the user must log in every day to
get a new valid certificate. According to our experience with
other environments, such a precaution is usually acceptable
for users provided that they can work for the full day without
interruption.

The PKI credential (i.e., the public-key certificate and the
corresponding private key) are used to establish an authenti-
cated channel with the collaborative service. If the collabora-
tive tools support PKI authentication they can just be pointed
to the files storing the credentials and communication goes
on as usual. For tools not supporting PKI we propose to
build a dedicated tunnel between the client and server that
encapsulates the whole application protocol. For the latter
approach to be useful, it is also necessary to adapt the
server and its current authentication routines. Since it is not
acceptable to change the client tools, they would still need to
pass on a username/password to the server. However if PKI
authentication is in place, this is not necessary and the server
can just skip the verification and rely on the pre-authentication
performed by PKI only. The only potential drawback of this
solution is the possibility to undermine some specific network-
related functionality of the collaborative environment used,
like passing through a NAT or firewall. Such functionality can
be gradually added to our solution in the future when users
demand it.



B. Access control

In order to authenticate a client using his or her PKI
credential and make access-control decision the collaborative
server has to perform standard operations to check validity of
the certificate, i.e., to check that it is signed by a trusted CA, its
lifetime has not expired, etc. Due to the short lifetime of the
certificates we do not plan to check revocation information,
but such checks could be easily enabled in the future if
a proper mechanism for timely distribution of revocation
data were developed. After authentication finishes, the server
passes the client’s attributes from the certificate along with
the client’s identity to the authorization engine. The engine
evaluates the input data, checking whether it matches the
requirements of the collaborative system. Being based on the
user’s attributes, the access control policy can be very flexible,
e.g., a collaborative group could be defined that is only open
for users possessing certain attributes in particular institutions.
For example, a group of physicians from different medical
schools could establish a collaboration to discuss a particular
case of a patient they are currently treating. As privacy is
obviously an important issue in such a case, only the doctors
involved in the case should be allowed to join. Using the
relevant attributes it is possible to specify a policy that opens
the group for such users even if identity of individual users is
not known in advance.

By means of the proposed framework it is possible to
establish a collaborative group very quickly without addi-
tional overhead. Users can join a collaborative environment
immediately after it is set up using their home authentication
credentials only. So no additional user management is required
on the part of the collaboration administrators. Using the
access control engine the administrators can define policies
prescribed for particular groups they manage. Being based on
the federation attributes, the policies may not be linked to the
users’ identities.

C. Current implementation

In this section we describe the current status of implementa-
tion of the framework and present tools that have been chosen
to achieve the needed functionality. The implementation is
based on our VPN solution, to which we added a service to
obtain a certificate to log in and attribute-based access control.
Currently we are finishing initial implementation.

The key assumption is that the framework is deployed in an
environment where a functional federation is already available.
Our development is being performed within czTestFed4,
which provides a federation testbed for the academic com-
munity in the Czech Republic. It is based on the Shibboleth
middleware [12], which is the most widely used solution for
federations currently, so our results will be directly applicable
for other Shibboleth-based federations, too. It would be even
possible to use the framework in federations that are built upon
different middleware sets, such as OpenID [13], Microsoft
InfoCard [14], or Liberty [15], provided they allow to build an

4https://cztestfed.feld.cvut.cz/

on-line CA server based on the same concepts. Then, the only
change to our framework would be adaptations to the server
authorization engine to support the format that the federation
middleware uses to transport attributes (if SAML is not used
already).

To support the logging phase we employed the CA from the
GridShib project [16]. The CA operates as a service provider
in a federation, allowing users to receive their public key
certificates upon authenticating using their home credentials.
The GridShib CA is implemented as a web service reachable
by common web browsers that support Java applets, which
is convenient for the users. The Subject name for the client
certificate is constructed using the client’s principal name
as specified in the attributes returned by his or her identity
provider. A SAML assertion containing the full set of attributes
is stored as an X.509 extension in the certificate, so it can be
used later by other services accessed by the client. If privacy
were a concern and people did not want to reveal their names
in the certificate, it would be easily possible to construct the
Subject name using a meaningless unique identifier and omit
all personal information from the attributes in the certificate.

The certificate returned by the CA is stored on a local disk
along with the corresponding private key. The credentials can
be later used by all applications supporting PKI authentication.
We modified the default configuration of our VPN clients
so that they look at the location where the PKI credentials
are stored by default. After the initial log-in (authentication,
creation of the certificate) the user can initiate a VPN channel
without any more authentication or configuration steps.

Using the federative CA, it is very straightforward for
the ordinary user to get valid certificates using his or her
home credentials. There is no need to distribute or explicitly
generate and store new credentials. The federation certificate
is simple to obtain but secure enough to be acceptable by
the collaborative environment (as well as other services). The
certificates offer a sufficient level of trust as they are not issued
anonymously but their owner can be tracked down to her
home institution when necessary. Since the certificates are only
short-lived, private keys can be stored unencrypted, allowing
the user’s applications access to them without the user’s
assistance, which provides a true single sign-on environment.

On the server side of our solution we use an OpenVPN
server [17] and a set of reflectors available from the VPNs
managed by the server. The OpenVPN server allows us to
specify various plugins that can be invoked to perform custom
actions on different events. In order to perform access control
decisions, we plan to use an “on-connect” plugin that gets
called upon establishing a connection from a client, which
ensures calling the authorization engine. Since the standard
implementation of the OpenVPN server only provides access
to the subject name from the client certificate and not the full
certificate we were not able to read the SAML assertion (the
attributes) from the certificate. Therefore we are working on
modifications to the part of the OpenVPN server that invokes
the plugin to pass a full certificate content so the assertion
embedded in the certificate is available to the plugin.



The plugin will read the assertion and pass it to the
authorization engine along with the IP address of the client
endpoint of the VPN channel that was assigned to the client.
Having evaluated the policy, the engine constructs a list of
groups the client currently has access to and grants the client
access to the appropriate reflectors. The Reflector Adminis-
trator Protocol [18] will be used to contact the reflectors and
pass information about the client and his or her IP address
that should be allowed to access. Once the engine library has
finished evaluating the policy the plugin will return control to
the master OpenVPN process to finish establishment of the
VPN so the client could start communicating. When the client
closes the connection an “on-close” plugin will be invoked,
which ensures the IP address is unregistered from all the
reflectors.

We have not yet finished an exact specification of the
format of the access control policy. The current design uses
an XML format, mapping a name of a group to a set of
attributes (SAML AttributeStatements) that are required to join
the group.

VI. CONCLUSION

Authentication and user and group management are im-
portant parts of collaborative environments. While often seen
as just an underlying service, they can easily decide the
fate of a new collaborative system. For example, these areas
might be regarded as too complex or hard to use. Also,
different authentication mechanisms make it difficult for users
to freely choose a collaborative environment that best suits
their immediate needs—to speak with family or friends, to
work on a public project, or to do private work.

To make this situation easier, we have developed a frame-
work based on the federative approach. The framework is
part of the middleware layer and provides a common security
solution that can be used by any collaborative environment. It
is based on PKI, but it uses an on-line Certification Author-
ity that provides an easy and transparent way of obtaining
certificates. This CA is part of a federation; the users ask
for certificate generation with their “home” credentials. The
certificates are extended with attributes provided by the home
institutions, which are used for the authorization process and
group management in a very generic manner. The federation-
based authorization mechanism allows for efficient group
management, with support for dynamic group creation and
highly secure access control (e.g., it is possible to specify that
a particular collaborative session is open to everybody who is
a physician at any of a set of listed institutions).

Extended with VPN tunnels, the framework provides a truly
general layer—a middleware bus—that can be used behind any
collaborative tools. When combined with the security services
presented in this paper, the VPN-based solution provides a
pre-authenticated secure channel that is used to transport the
actual data for the collaborative environments. According to
our previously published measurements [8], this solution does
not introduce any significant impact on the traffic param-
eters. There is no need for any upper-layer authentication

or user or group management, as all this functionality is
encapsulated in the process of federated certificate generation
and secure-channel establishment. Clients of the collaborative
environments can remain unchanged, only the servers need
to be modified to work with the established secure channels,
skipping any upper-layer authentication or authorization.

ACKNOWLEDGMENT

The work has been supported by the research intent “Optical
Network of National Research and Its New Applications”
(MSM 6383917201) of the Ministry of Education of the Czech
Republic.

REFERENCES

[1] N. Zennström and J. Friis, “Skype,” 2003-2007, http://www.skype.com/.
[2] P. Biondi and F. Desclaux, “Silver needle in the skype,” in BlackHat Eu-

rope, Mar. 2006, http://www.blackhat.com/presentations/bh-europe-06/
bh-eu-06-biondi/bh-eu-06-biondi-up.pdf.

[3] S. A. Baset and H. Schulzrinne, “An analysis of the skype peer-to-peer
internet telephony protocol,” in INFOCOM 2006, Barcelona, Spain, May
2006, http://www1.cs.columbia.edu/~salman/publications/skype1_4.pdf.

[4] L. Childers, T. Disz, M. Hereld, R. Hudson, I. Judson, R. Olson,
M. E. Papka, J. Paris, and R. Stevens, “ActiveSpaces on the Grid: The
construction of advanced visualization and interaction environments,” in
Simulation and Visualization on the Grid, 2000.

[5] L. Childers, T. Disz, R. Olson, M. E. Papka, R. Stevens, and T. Udeshi,
“Access grid: Immersive group-to-group collaborative visualization,” in
Proceedings of Immersive Projection Technology, Ames, Iowa, 2000.

[6] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The physiology
of the grid: An open grid services architecture for distributed
systems integration,” Jun. 2002. [Online]. Available: citeseer.ist.psu.
edu/foster02physiology.html

[7] T. Uram, “Access Grid authorization,” in Ac-
cess Grid Workshop–APAC‘05, 2005, see also Section
2.9 of Virtual Venue Management User Manual. [On-
line]. Available: http://www-unix.mcs.anl.gov/fl/research/accessgrid/
documentation/tutorial/AGTk_2.4/Authorization/Authorization.ppt

[8] P. Holub, E. Hladká, M. Procházka, and M. Liška, “Secure and Pervasive
Collaborative Platform for Medical Applications,” in Studies in Health
Technology and Informatics, vol. 126. The Netherlands, Amsterdam,
IOS Press, 2007, pp. 229–238.

[9] “ITU-T Recommendation X.509: Information technology—Open Sys-
tems Interconnection—The Directory: Public-key and attribute certifi-
cate frameworks,” 2005, http://www.itu.int/rec/T-REC-X.509/e.

[10] R. Housley, W. Polk, W. Ford, and D. Solo, “Internet X.509 Public
Key Infrastructure—Certificate and Certificate Revocation List (CRL)
Profile,” IETF RFC 3280, 2002.

[11] E. Maler and et al, “Bindings and Profiles for the OASIS Security
Assertion Markup Language (SAML) V1.1,” Sep. 2003, OASIS.

[12] S. Cantor, “Shibboleth Architecture—Protocols and Profiles,” http://
shibboleth.internet2.edu/shibboleth-documents.html.

[13] D. Recordon and D. Reed, “Openid 2.0: a platform for user-centric
identity management,” in 13th ACM Conference on Computer and
Communications Security Co-Located Workshops, Nov. 2006, pp. 11–16.

[14] K. Brown, “A first look at infocard,” MSDN Magazine, vol. 21, no. 5,
Apr. 2006.

[15] ID-WSF Advanced Client 1.0 Specifications -
Draft Release 2, 2007. [Online]. Available:
http://www.projectliberty.org/resource_center/specifications/liberty_
alliance_complete_specifications_zip_package_01_august_2007

[16] T. Barton, J. Basney, T. Freeman, T. Scavo, F. Siebenlist, V. Welch,
R. Ananthakrishnan, B. Baker, M. Goode, and K. Keahey, “Iden-
tity Federation and Attribute-based Authorization through the Globus
Toolkit, Shibboleth, GridShib, and MyProxy,” in 5th Annual PKI R&D
Workshop, 2006.

[17] C. Hosner, OpenVPN and the SSL VPN Revolution, Aug. 2004,
The SANS Institute, http://www.sans.org, http://www.sans.org/reading_
room/whitepapers/vpns/1459.php.

[18] J. Denemark, P. Holub, and E. Hladká, “RAP – Reflector Administration
Protocol,” CESNET, Tech. Rep. 9/2003, 2003.


