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Abstract—In this paper, we propose a distributed Active
Element for tightly coupled cluster environment, suitable for
distribution of large bandwidth data that exceed capacity of
every single node in the cluster. This approach utilizes the fact
that real-time multimedia transmission systems relying on non-
guaranteed protocols like UDP need to handle limited packet
reordering on their own. We describe the Fast Circulating Token
protocol, which enables imposing even stricter bound on the
outbound packet reordering. The whole system is examined
on 10GE testbed and shows very good performance. The FCT
provides expected improvement, making the packet reordering
comparable to long haul networks.

Index Terms—multi-point user-empowered data distribution,
distributed Active Elements, virtual multicast, multimedia data
distribution

I. INTRODUCTION

High-speed networking proliferation has catalyzed devel-
opment and deployment of new real-time communication
systems based on distribution of high-bandwidth multimedia
information, like 4K and High-Definition (HD) video sys-
tems [1], [2], [3]. When designed for multi-point collaborative
environments, multi-point data distribution needs to be en-
sured. Native network multicast has turned to perform less then
acceptably in many cases and thus systems like Flexcast [1]
or reflectors [2] have been developed. In this paper, we focus
on a parallel reflector-based system called distributed Active
Element (AE) for synchronous multimedia data distribution
and processing [4], [5], which allows distribution of high
bandwidth streams using parallel processing on tightly coupled
commodity computer clusters. Parallel processing is incor-
porated in specialized hardware of modern high-performance
switches and routers. However, its implementation on general
purpose hardware is limited because of requirement for zero
output packet reordering, which has severe consequences,
e.g., on slowing down performance of the most widely used
transport protocol—TCP [6]. The real-time multimedia com-
munication relying on non-guaranteed transmission protocols,
like RTP over UDP, however needs to handle the packet
reordering on their own anyway, as the reordering is often
present in long-distance transmissions for high-bandwidth data
rates [6], [7]. We examine performance of the distributed AE
in 10 Gigabit Ethernet environment for distribution of multi-
Gigabit data streams, as used by advanced multimedia systems
relying on uncompressed HD and post-HD video.

Related work. Since the native multicast support is not
always available, reliable, or performing well enough, mul-
ticast virtualization technologies have been introduced, like

the H.323 MCUs or reflectors in the Virtual Room Videocon-
ferencing System (VRVS)1. Its successor EVO [8] is based
on self-organization of system of reflectors. Similar approach
has been pursued earlier by our group [9]. Other simpler UDP
packet reflectors include rcbridge [10], reflector2, and Alkit
Reflex3.

Another area related to this paper is utilization of computer
clusters as either distributed routers or distributed servers [11],
[12], [13]. Project Suez [14] is a distributed router based on
commodity PC cluster with Myrinet interconnection with each
node of the cluster having one internal interface to the Myrinet
switch and optionally one or more external interfaces. Suez
uses a routing-table search algorithm that exploits CPU cache
for fast lookup by treating IP addresses directly as virtual
addresses. Another project which distributes processing load
on active network elements is Active Network Node [15] that
relies on specialized hardware. Software DSM project [16]
attempts to build efficient distributed memory for closely
coupled clusters for using them as active routers. There is yet
another similar project called Cluster-based Active Network
Router [17]. However none of the above mentioned projects
addresses finer than per-address network load distribution—
thus there is no need for solving packet reordering issues,
but on the other hand it doesn’t solve the problem of data
distribution for streams where the bandwidth exceeds capacity
of each single parallel unit in the cluster.

Our distributed AE is designed not only for data distribution,
but allows for processing as well. Relevant parallel program-
ming paradigm for stream processing on distributed clusters
has been proposed in MIT StreamIt project [18].

Paper organization. Section II gives a brief overview of
distributed AE architecture, introducing the packet reordering
limiting using Fast Circulating Token protocol. Section III
describes experimental results of distributed AE used with
multi-Gigabit data flows. Concluding remarks and future work
ideas are given in Section IV.

II. DISTRIBUTED ACTIVE ELEMENT

In this section, we give an overview of the distributed
AE and its basic properties with respect to data distribution,
required for understanding experimental section of this paper.
More details on the distributed AE can be found in [4], [5].
The architecture of the distributed AE is based on architecture

1http://www.vrvs.org/
2http://www.cs.ucl.ac.uk/staff/s.bhatti/teaching/z02/reflector.html
3http://w2.alkit.se/reflex/



of AE [9] and it is partly determined by requirement of
implementability on existing tightly coupled clusters with low
latency interconnection. The computing nodes form a com-
puter cluster with each node having two connections: (1) low-
latency control connection used for internal communication
and synchronization inside the distributed AE, and (2) data
connection used for receiving and sending the data. Example
of such a system is shown in the evaluation testbed description
in Figure 2.

The incoming data needs to be first distributed across the
multiple parallel units of the distributed AE, processed in these
units, and finally aggregated and sent over the network to the
listening clients. Thus the architecture comprises three major
parts:

• Distribution unit takes care of ingress data flow distribu-
tion over multiple parallel distributed AE units. When the
distribution unit is part of the same L2 domain as parallel
AE units (e.g., using VRRP or CARP protocols), it may
operate on L2 addresses only, otherwise L3 (usually IP)
addressing is needed.

• Parallel AE unit is a complete instance of AE with modi-
fied sender module to allow for possible synchronization.
It has the kernel with administrative submodules, session
management, processor schedulers, and AAA submod-
ules. Data is received by network listener modules, stored
into shared memory (shared across a single instance of
the reflector only, not across multiple AE unit instances),
processed by zero or more processors, distribution lists
filled up with either one of processors or with session
management and finally sent with the sender module. The
network management module handles communication
with distribution unit and also communication with other
distributed AE units.

• Aggregation unit aggregates the resulting traffic to out-
put network line(s). Because the AE element is most
commonly used for data multiplication, we assume that
output data flow from the distributed AE is larger than
input data flow. Thus we need a unit that is even more
powerful than the input load distribution unit. In most
cases, cheap custom made software implementation is not
available and we have to use available hardware solution
like aggregating switch. However, in that case we must
not assume any further behavior of the aggregating unit
except for the following two things: first, it is over-
provisioned enough not to loose any data, and second,
it has limited buffer space available.

There are also protocols designed for set up and mainte-
nance the distributed AE [5], so that new parallel units may
join in and existing may leave.

• The ideal network is a network in which no data is lost,
corrupted, nor reordered. It also provides instant delivery,
i. e., it introduces zero latency.

• The ideal multimedia traffic has bandwidth b and inde-
pendent packets of exactly same size sp, which is also
used to express all the queue sizes in the system. In order

to isolate reordering introduced by the distributed AE, we
assume that the ideal multimedia traffic has no reordering
prior to entering distribution unit.

• The ideal aggregating unit has n identical input interfaces
and a single output interface with capacity equal or bigger
than the n inputs together. It reads packets from the
size-limited input interface queues and sends them on
an output interface in such a way, that packets are never
lost. The speed is bSW

j (bits per second) for j-th input
interface and each input queue has equal size of sSW

i for
each input interface. In order not to lose any input data,
the ideal aggregating unit needs to fulfill the following
requirement in the steady state:

∑
j bSW

j ≤ bSW
o .

• The ideal AE has processing capacity equal or higher than
stream bandwidth and it has an input queue size of sAE

i

and all the parallel units have the same parameters and
performance. The ideal AE introduces no losses, no data
corruption, nor data reordering in the data stream.
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Figure 1. Model of the ideal distributed AE with ideal aggregation unit.

A. Ingress Distribution

The ingress data distribution takes care of distributing
incoming data across different paths inside the distributed
AE. For the ideal distributed AE the ideal distribution unit
distributes packets in round-robin fashion. In each round, it
distributes m packets, one to each of the parallel units. The
distribution unit marks round number into each packet. This
protocol is modified in case that parallel units are of unequal
performance.

B. Egress Synchronization

1) No explicit synchronization: The simplest model for
egress synchronization is to use no synchronization at all.
However, with this model and limited buffers on the input
interfaces of the AEs, there is still some implicit synchroniza-
tion achieved.

It can be shown the maximum reordering induced by an
ideal distributed AE (shown in Figure 1) with no explicit
egress synchronization and ideal aggregating unit is

n(sAE
i + sAE

o + sSW
i + 1),



where n is the number of parallel AE units when all queues
operate in FIFO tail-drop mode. Detailed proof can be found
in [5].

2) Fast Circulating Token: In order to decrease packet
reordering introduced by the distributed AE, we have in-
troduced a distributed algorithm for achieving less packet
reordering compared to no explicit synchronization. The nodes
are ordered in a ring with one node elected as a master
node and they circulate a token which serves as a barrier
so that no node can run too much ahead with sending data.
After reception of the token containing the current “active”
round number, each non-master node passes on the token
immediately and may send only the data from the round
marked in the token until it receives to token again. When the
master node receives the token from the last node in the ring,
it finishes sending the current round, increments the round
number in the token a passes on the token. The mechanism
is called Fast Circulating Token (FCT) since the token is not
held for the entire time period of data sending as usual in the
token ring networks.

Because of real world implementation of data packet send-
ing in common operating systems, we assume that sending
procedure for a single packet is non-preemptive. Further we
assume that token reception event processing has precedence
over any other event processing in the distributed AE. How-
ever, as the data sending is non-preemptive, if the token arrives
in the middle of data packet sending, it will be handled just
after that packet sending is finished.

After more detailed analysis [5], it can be shown the
maximum reordering induced by an ideal distributed AE with
FCT egress synchronization and ideal aggregating unit is

n(sSW
i + 3),

where n is the number of parallel AE units when all queues
operate in FIFO tail-drop mode.

When operating in a non-ideal environment, there are sev-
eral complications that need to be taken into account:

• packet reordering, either before data reaches the dis-
tributed AE, or on a single parallel path inside distributed
AE—settings of the FCT determine whether excessive
packet reordering will be converted to packet loss or not,

• due to unequal performance of parallel paths, load bal-
ancing may be deployed—again the reordering of two
consecutive packet is limited by size of two consecutive
rounds, but each round may have more than n packets
depending on load balancing scheme used,

• packet loss due to overloading of distributed AE or some
of its parts.

3) Exact Order Sending: It is possible to design sending
protocol that results into exact ordering, but it requires de-
fined behavior of aggregation unit and thus it is not suitable
for implementation on commodity hardware like aggregating
switches. The details can be found in [4], [5].

III. PROTOTYPE PERFORMANCE EVALUATION IN 10GE
ENVIRONMENT

Prototype implementation of the distributed AE is imple-
mented in ANSI C language for portability and performance
reasons. The implementation comprises two parts: a load
distribution library and the distributed AE itself.

Because of lack of flexible enough load distribution hard-
ware unit, we have implemented it as a library, which allows
simple replacement of standard UDP related sending functions
in existing applications and allows developers to have defined
type of load distribution—either pure round robin or load
balancing.

Each parallel AE uses threaded modular implementation
based on architecture described in Section II. Internal buffering
capacity of each AE node has been set to 500 packets. Explicit
synchronization using FCT protocol has been implemented
using MPICH implementation4 of MPI built with low-latency
Myrinet GM 2.0 API5 (so called MPICH–GM). Prototype
implementation has been tested on Linux.

For cost-effective prototype implementation, the aggregation
unit was a implemented as commodity switch with sufficient
capacity of internal switching matrix.

A. Experimental Setup

The behavior of the distributed AE has been evaluated on
a 10GE testbed shown in Figure 2. The sender and receiver
machines were identical PCs with dual AMD Opteron 250
processor at 2.4 GHz, 2 GB RAM, and 10GE Chelsio T110
NIC card in a PCI-X 133 MHz slot. Both computers were
running SuSE Linux 9.1 with 2.6.6 vanilla kernel with Chelsio
drivers and patches. The computers were connected to 10GE
ports of the Cisco 6506 switch.

Figure 2. Experimental testbed setup.

The parallel AE units were run on a IA32 PC cluster with
Myrinet-2000 low-latency interconnection. The nodes were
equipped with dual Intel Xeon at 2.4 GHz, 2 GB RAM, and
Broadcom NetXtreme BCM5703 card plugged into Gigabit

4http://www-unix.mcs.anl.gov/mpi/mpich/
5http://www.myri.com/scs/GM-2/doc/html/



# parallel units max. bw [Mbps]
1 800
2 1600
3 2400
4 3200
5 4000
6 5000
7 5000
8 5000

Table I
MAXIMUM FORWARDING BANDWIDTH FOR VARYING NUMBER OF

PARALLEL UNITS FOR THE DISTRIBUTED AE.

Ethernet ports of Cisco 6506 switch. Each node had also
Myrinet M3F-PCI64C-2 NIC plugged into Myrinet M3-E32
with M3-SW16-8F interface.

The distribution unit was implemented in software based on
direct IP addressing of the parallel nodes, the stream splitting
was carried out by the 6506 switch, which was also acting as
the aggregating unit.

B. Performance Evaluation

In order to evaluate raw performance of the AE, we have
measured maximum bandwidth of a stream that the AE
is able to forward without packet loss greater than 0.1%.
This benchmark more demanding and thus also representative
because of memory to memory copying limitations, compared
to the replication, which easily saturates the bandwidth of the
outgoing network interface [19].

a) Stand-alone reflector: Standalone reflector running on
one node of the testbed cluster was measured for reference
purposes and it was able to forward data up to 800 Mbps.

b) Distributed AE: Maximum bandwidth for forwarding
with less than 0.1% packet loss was measured for varying
number of parallel units and the results are summarized in
Table I. Note the saturation at 6 parallel units, which is caused
by the maximum throughput on the Chelsio T110 cards on
sender and receiver.

For low loss area, the results are equivalent both for the un-
synchronized and FCT-synchronized version of the distributed
AE. It also turns out that the performance scales linearly with
respect to the number of parallel AE units. When examining
the higher loss areas (which are not usable for real data
distribution anyway), the FCT-synchronized version performs
slightly worse than the unsynchronized. This can be observed
from upper part of the graphs in Figure 3, for 2 and 4 parallel
units respectively; the lines are overlapping for 6 and 8 units as
the higher loss region is not reached because of sender/receiver
saturation as discussed above.

C. Packet Loss and Reordering Evaluation

The reordering is expressed as the difference between
sequence numbers of two consecutive packets. Thus, if all the
sequentially numbered packets arrive in the same order they
were sent, all the differences are +1. Higher number than +1
means, that some packets were skipped forth (either because

BW FCT-sync unsync
[Mbps] min{j} H− N− min{j} H− N−

200 0 0 0 -4 -12 3
400 0 0 0 -6 -7 2
600 -1 -6 6 -3 -5 2
800 -5 -26 16 -4 -13 5
1000 -6 -124 93 -10 -21 5
1200 -7 -82 67 -33 -113 15
1400 -5 -220 179 -39 -455 65
1600 -6 -522 466 -7 -301 281
1800 -5 -1162 1104 -50 -911 627
2000 -5 -1317 1252 -20 -1214 1119
2200 -7 -1545 1443 -10 -1706 1599
2400 -7 -2634 2520 -14 -2591 2435
2600 -6 -4946 4736 -14 -5423 5177
2800 -15 -6539 5886 -15 -7351 7005
3000 -6 -7963 7424 -31 -10987 9654
3200 -7 -8712 7117 -89 -9420 7592
3400 -7 -9431 5060 -100 -9104 4827
3600 -7 -57523 27730 -38 -50178 26252
3800 -7 -256152 122298 -111 -253093 125121
4000 -7 -482062 229886 -23 -480988 236434
4200 -7 -989134 464849 -33 -952629 476268
4400 -7 -1484894 685827 -46 -1535218 755956
4600 -7 -1081210 497005 -25 -938601 473483
4800 -7 -406902 183817 -43 -181140 97237
5000 -7 -38077 19546 -27 -13435 10480

Table II
PACKET REORDERING FOR 8 PARALLEL UNITS.

of packet reordering or because of packet loss) while negative
number means stepping back in packet numbering (due to
packet reordering only). Value of 0 occurs when duplicate
packets arrive immediately following each other. min{j} is
the maximum negative difference in sequence numbers of
successively received packets. The min{j} is very important
from the application developer perspective, as it gives the
amount of packet buffer needed to reconstruct the proper order
of packets (provided no packet loss occurs), and also from
the users perspective, as the amount of buffering it related to
latency increase the users are experiencing.

For any interval of arrivals of two or more packets, the
following equation holds

−1∑
j=min{j}

jhj︸ ︷︷ ︸
H−

+ h1︸︷︷︸
H1

+
max{j}∑

j=2

jhj︸ ︷︷ ︸
H+

= ∆, (1)

where ∆ is difference between sequence number of last and
first packet in the observed interval. Also, for the any interval
of arrivals of more than one packet, the following equation
holds:

Π +
−1∑

j=min{j}

hj︸ ︷︷ ︸
N−

+ h1︸︷︷︸
N1

+
max{j}∑

j=2

hj︸ ︷︷ ︸
N+

−δ = ∆. (2)

where Π is number of lost packets and δ is a number of
duplicated packets that are not included in h0. Proofs for both
can be found in [5]. By combining both equations (1) and (2),
we can derive packet loss as Π = H−+H+−N+−N−+ δ.
Because positive part of the graph described by H+ or N+

includes also packet loss, the negative part of the graph



described by H− or N− can be seen as measure of packet
reordering.

The difference between the H-sums and the N -sums is that
the H-sums are “weighted sums”. Thus the more packets are
farther from 1 in either direction, the higher the absolute value
of H-sums are, while the N -sums remain the same. All the
terms in the N−, N+, and H+ are positive and all the terms in
the H− are negative. If H− ≈ N−, the vast majority of out-
of-order packets in the negative part is reordered by j = −1.

Figure 4. Sample packet reordering distribution with FCT and without
synchronization, for 8 parallel units and 3.4 Gbps per data flow.

c) Stand-alone reflector: The bigger the loss is above the
800 Mbps performance limit, the larger the sum H+ is. No
reordering nor duplicates are introduced, thus H− = N− =
h0 = 0.

d) Distributed AE: The results presented here are a
subset of complete set of measurement carried out in order
to evaluate the behavior of distributed AE throughly. Figure 4
shows dependence of min{j} on bandwidth of the forwarded
stream (lower part of each graph) together with packet loss
(upper part) for 2, 4, 6, and 8 parallel units. The behavior for
3, 5, and 7 is comparable. It turns out that before the saturation
of the distributed AE (c.f. Table I), the FCT significantly
improves maximum packet reordering min{j}.

More detailed results for 8 parallel units is shown in
Table II, revealing that H− and N− are similar for FCT and
unsynchronized versions. Sample reordering distribution for
the 3400 Mbps stream and 8 parallel units is given in Figure 4.
The reordering results are appropriate to be viewed in the
context of long haul network paths. Given examples [7] of
rather problematic Washington D. C. to Los Angeles link with
min{j} over -60 and high-quality link from Los Angeles to
Pittsburgh with min{j} of -1, the FCT gives much better
results than the former link and gives comparable results
to the latter one. Thus a real-time multimedia transmission

application, which has been developed to work over long
distance networks, needs to adapt to even significantly worse
packet reordering than the one outgoing from distributed AE,
to perform reliably in real world conditions.

Token round-trip time in FCT protocol has been also moni-
tored and it ranges between 14 µs for 2 parallel AE paths and
raises up to approximately 60 µs for 8 parallel paths, which
is in accordance with one-way message passing latency of
Myrinet configuration used for the testbed as described above.

IV. CONCLUSIONS

In this paper, we have presented the concept of distributed
Active Element, which relaxes the requirement for strict packet
ordering, assuming that the real-time multimedia transmission
applications relying on non-guaranteed protocols like UDP
need to adapt to some degree of packet reordering on their
own. This allowed us to design and prototype a scalable system
for data distribution and potentially also processing of real-
time multimedia data based on tightly coupled clusters with
low-latency internal interconnection. We have proposed the
Fast Circulating Token protocol in order to impose harder up-
per bound on the maximum packet reordering. The prototype
system has been examined using 10 Gigabit Ethernet testbed
and the results suggest its usability for high-end applications.

In the future, we would like to focus on three basic areas.
First, we would like to adapt some of the parallel stream
processing paradigms like StreamIt [18] to program data pro-
cessing for the distributed AE, thus turning the system into a
more general active router. Second, having the data processing,
we would like to extend the distributed AE with quality of
service support on several levels (network bandwidth, CPU
capacity, memory capacity and bandwidth, etc.). Third, we
intend to examine suitability of custom hardware solutions
based on FPGA to build a aggregation unit allowing exact
order packet sending.
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