
Hardware-constrained
Packet Classification

David Antoš

}w��������
��������������� !"#$%&'()+,-./012345<yA|

A thesis submitted for the degree of
Doctor of Philosophy at

The Faculty of Informatics, Masaryk University

Brno, Czech Republic
February 2006

Except where otherwise indicated, this thesis is my own original work.

David Antoš

Brno, Czech Republic
February 2006

i

Acknowledgements

I am very grateful to my adviser prof. Luděk Matyska for his support and guid-
ance throughout my work, his patience and insightful comments.

My special thanks go to dr. Petr Holub and Vojtěch Řehák who helped me
greatly with preparation of this thesis and spent hours in numerous discussions
with me. Petr was usually the first reader of my first drafts, reworked versions
of first drafts, reworked versions of reworked versions, suffering all the pain this
work causes.

I appreciate work of my bachelor and master students, Kateřina Minaříková,
Marek Pospíšil, Josef Ševčík, Ondřej Chaloupka, and my colleagues of the Libe-
router project.

My thanks extend to dr. Eva Hladká, head of the Laboratory of Advanced
Network Technologies of the Faculty of Informatics. Her support and comments
to the text have been invaluable. I have had the honour and pleasure to share
the laboratory with great people, Miloš Liška who also proofread the text, Lukáš
Hejtmánek, Jiří Denemark, Tomáš Rebok, and others. Thanks for their support
and friendship.

D. A.

Typeset by ConTEXt http://www.pragma-ade.com

ii

Abstract

The goal of this work is to propose a unified packet classification method combin-
ing routing, level 3-to-level 2 address translation (ARP), and packet filtering, that
can be implemented on a single packet classification unit with a content address-
able memory (CAM) and a static RAM. As the target architecture of this work is
a general purpose computer equipped with a hardware acceleration card and the
operating system being able to classify all the packets even though at lower rate
compared to the acceleration card, the packet classification may be partially post-
poned for the operating system. The ultimate goal is to maximise the amount of
traffic confined to the hardware classification unit.

The method of combining routing, ARP, and packet filtering into a single look-
up operation consists of two separate parts. First, routing and ARP are combined
to a single trie-based structure called routing-ARP table that solves both steps at
once. We have introduced a formalism for routing and ARP and we have proven
correctness of the combined structure.

Second, the novel representation of packet filters called Filtering Decision Dia-
gram (FDD) is added. The FDD is a special type of binary decision diagrams with
semantical relationship among nodes. Compared to previous decision diagram
representations of packet filters, FDDs reflect natural properties of filters and in-
corporate the concept of encoding rule order directly to the structure. Granularity
of a decision node corresponds to a single term of a filtering language, as opposed
to binary decision diagram representations where a single bit is the unit of pro-
cessing (which is not feasible in CAMs). We describe procedures to build FDD
representations out of packet filters.

Based on the principle of distributing relevant filters to relevant portions of
destination address space, the routing-ARP table is combined with FDD represen-
tations of filters. We define procedures to rewrite the resulting structure into the
target hardware architecture, i.e., first match CAM and comparison instructions
that finish the classification. Rewriting the resulting structure into the target ar-
chitecture gives also a general procedure to convert decision diagrams into first
match CAMs.

Properties of the target hardware architecture limit the degree of freedom in
the method. The method is optimised for memory conservation, adaptable to vari-
ous target memory sizes and insufficient resources of an actual hardware design.

Performance of the resulting structures is experimentally verified using a pro-
totype implementation simulation.

iii

Contents

List of Figures . vii

List of Tables . viii

List of Definitions and Theorems . ix

List of Algorithms . x

List of Abbreviations . xi

1 Introduction . 1
1.1 Accelerated PC Routers . 2
1.2 Target Hardware Architecture . 3
1.2.1 Packet Processing in Hardware . 4
1.2.2 Unified Header and LUP . 5
1.2.3 Software Support of the Hardware Accelerator 6
1.3 Properties of the Target Architecture . 6
1.4 Problem Statement . 7
1.5 Contributions . 8
1.6 Thesis Outline . 9

2 Methods of Packet Classification . 10
2.1 Longest Matching Prefix Lookup . 11
2.1.1 Trie and its Variants . 11
2.1.1.1 Basic Trie Structure . 11
2.1.1.2 Dynamic Packed Trie . 11
2.1.1.3 Patricia . 12
2.1.1.4 LC-trie . 12
2.1.1.5 Tree Bitmap Algorithm . 14
2.1.1.6 Grid-of-Tries . 14
2.1.1.7 Multi-bit Trie with Expansion . 15
2.1.2 Binary Search on Prefix Lengths . 16
2.1.3 Controlled Prefix Expansion . 17
2.1.3.1 Choosing Optimal Levels . 17
2.1.3.2 Adaptive Level Cutting . 18
2.1.3.3 Applying the Ideas to Other Methods . 19
2.1.4 Expansion/Compression Approach . 19
2.1.5 Introducing Memory Constraints . 20
2.1.6 Other Approaches . 21

iv

2.2 Packet Classification . 21
2.2.1 Exhaustive Search . 22
2.2.1.1 Content Addressable Memory . 22
2.2.1.2 Modified CAM Schemes . 22
2.2.2 Decomposition into Single Fields . 23
2.2.2.1 Recursive Flow Classification . 24
2.2.2.2 Bit Vector Approaches . 24
2.2.2.3 Crossproducting . 24
2.2.2.4 Distributed Crossproducting of Field Labels 25
2.2.3 Tuple Search . 25
2.2.4 Decision Trees . 26
2.2.4.1 HiCuts . 26
2.2.4.2 FIS Trees . 26
2.2.4.3 HyperCuts . 27
2.2.5 Decision Diagram Representations . 27
2.2.5.1 Binary Decision Diagram . 27
2.2.5.2 Interval Decision Diagrams . 29

3 Routing, ARP, and Packet Filtering in Software Routers 32
3.1 Routing . 33
3.1.1 Routing Table . 33
3.1.2 Formal Notation . 34
3.1.3 Properties of Routing Tables . 35
3.1.4 Prefix Expansion . 36
3.2 Link Layer Addressing . 39
3.2.1 Address Translation Mechanism . 39
3.2.2 Formal Notation . 40
3.3 Packet Filtering . 41
3.3.1 Inputs of Filtering . 43
3.3.2 Evaluation Order of Firewall Rules . 44
3.3.2.1 First-match and Last-match Filters . 44
3.3.2.2 Last-match Filters with quick . 44
3.3.2.3 “Double Match” Features . 46
3.3.3 Position of Filtering in IP Stack . 47
3.3.3.1 Overview of Filtering Schemes . 47
3.3.3.2 Expression Power Comparison . 49
3.3.3.3 Position of the Hardware Accelerator in the System 51
3.3.4 Resulting Actions . 52
3.3.5 Packet Filter Definition . 53

v

4 Routing and ARP Table Combined . 56
4.1 Software Cooperation . 56
4.2 Routing and ARP . 57
4.2.1 Obtaining ARP Records . 58
4.2.2 RA Table Definition . 60
4.2.3 Computing First-Match RA Tables . 60
4.2.4 RA Table Properties Summary . 66
4.2.5 Longest Prefix Representation of RA Table . 67
4.2.6 Complexity of the RA Table . 67

5 Routing, ARP, and Filtering Combined . 69
5.1 RAF Table . 70
5.2 Naive Approach . 71
5.2.1 The Method . 71
5.2.2 Table Degeneration . 72
5.3 Representing Filtering Rules as Decision Diagrams 75
5.3.1 Filtering Decision Diagrams . 75
5.3.2 Creating and Testing FDD Nodes . 78
5.3.3 Restriction . 78
5.3.4 Converting a Filtering Rule to an FDD . 81
5.3.5 Converting a Rule Set to an FDD . 83
5.3.6 Implementation Notes . 84
5.4 Combining RA and Filtering into Single Operation 84
5.5 Rewriting the RAF Structure to LUP . 86
5.5.1 Rewriting the RA Part . 88
5.5.2 Converting FDD to First-Match CAM . 88
5.5.3 Query Types in CAM . 90
5.5.4 Correctness of the CAM Search . 91
5.5.5 Creating Lookup Instructions . 92
5.6 Complexity Considerations . 92
5.7 Packets Delivered to the Host Computer . 93
5.8 Dealing with Implementation Limitations . 94

6 Experiments . 96
6.1 Simulation Environment . 97
6.2 Experimental Data . 98
6.3 General Notes on Experimental Results . 99
6.4 Experimental Results . 100
6.4.1 Variable Filter Length . 101
6.4.1.1 CAM Size . 101
6.4.1.2 FDD Nodes . 101
6.4.1.3 FDD Paths . 102
6.4.1.4 Traffic Samples . 105

vi

6.4.2 Variable Routing Table Length . 105
6.4.3 Effect of CAM Allocation . 106
6.5 Evaluation of Experimental Results . 108
6.5.1 Memory Usage . 108
6.5.2 Lookup Time . 109

7 Conclusion . 111

Bibliography . 113

A Structure of the Unified Header . 119

B Detailed Experimental Results . 121
B.1 Variable Filter Length . 121
B.1.1 Data Set 1 . 121
B.1.2 Data Set 2 . 124
B.1.3 Data Set 3 . 126
B.2 Effects of CAMList . 129
B.2.1 Data Set 1 . 129
B.2.2 Data Set 2 . 131
B.2.3 Data Set 3 . 133

vii

List of Figures

1.1 COMBO6 firmware architecture . 4
3.1 Example of a routing table . 34
3.2 Algorithm 3.1 illustration . 37
3.3 Example of an ARP table . 40
3.4 Expanding next term statement in first-match filters 47
3.5 Ordering rules in FORWARD filters . 50
3.6 Grammar of packet filters . 55
3.7 Packet filter—an example . 55
4.1 Scheme of prefix length structure created by Algorithm 4.1 64
4.2 RA table computed out of R in Fig. 3.1 and A in Fig. 3.3 67
5.1 A packet filter (left) and the resulting RAF table (right) 73
5.2 Principles of FDD restriction . 80
5.3 Restriction example . 81
5.4 Converting a filtering rule to FDD . 82
6.1 Number of CAM rows depending on filter length 101
6.2 Number of FDD nodes depending on filter length 102
6.3 Maximum paths in FDD depending on filter length 103
6.4 Histogram of FDD depths for data set 1 (56 filtering rules) 103
6.5 Histogram of FDD depths for data set 2 (35 filtering rules) 104
6.6 Histogram of FDD depths for data set 3 (35 filtering rules) 104
6.7 Number of CAM rows depending on routing table length 105

viii

List of Tables

6.1 Characteristics of Measurement Sources . 98
6.2 Values of CAMList . 100
6.3 Effects of CAMList—CAMList shorthands . 106
6.4 Effects of CAMList . 107

ix

List of Definitions and Theorems

Definition 3.1 IP, routing table . 33
Definition 3.2 Direct and indirect routes . 34
Definition 3.3 Routing table syntax . 34
Definition 3.4 Result of routing . 35
Lemma 3.5 . 37
Theorem 3.6 Correctness of the expansion . 38
Definition 3.7 ARP table . 40
Lemma 3.8 . 45
Lemma 3.9 . 46
Definition 3.10 Packet filter . 54
Definition 4.1 RA table . 60
Lemma 4.2 . 62
Theorem 4.3 Correctness of RA compilation . 62
Lemma 4.4 RA compilation sort order . 63
Lemma 4.5 Deleting redundant RA entries . 64
Lemma 4.6 Sorting full-length RA records . 64
Definition 5.1 RAF table . 70
Definition 5.2 (Multi-terminal) binary decision diagram 75
Definition 5.3 MTBDD—special types . 76
Definition 5.4 FDD variables . 76
Definition 5.5 Filtering decision diagram . 77
Theorem 5.6 Principle of filter distribution into address space 85
Definition 5.7 RA table FDD output . 85
Definition 5.8 CAM rows . 87
Theorem 5.9 Result of RA is correct in CAM . 91

x

List of Algorithms

3.1 Expanding a prefix in a routing table . 37
4.1 Combining routing and ARP into RA table . 61
4.2 Combining routing and ARP into RA table expressed as trie 67
5.1 Combining RA and packet filter naively . 72
5.2 FDDRestrict(u, j, v) . 79
5.3 FDDAnd(u1, u2) . 82
5.4 FDDAppend(u1, u2) . 83
5.5 Converting a filter to the FDD representation . 84
5.6 Main loop of RAF computation . 86
5.7 Converting RAF structure into LUP . 88
5.8 LUPInsertCAMFilter(i, CAMRow): placing FDD into CAM 89

xi

List of Abbreviations

ARP Address Resolution
Protocol

ATM Asynchronous Transfer
Mode

BDD Binary Decision Diagram
BPF Berkeley Packet Filter
BSD Berkeley Software

Distribution
CAM Content Addressable

Memory
CIDR Classless Inter-Domain

Routing
CRC Cyclic Redundancy

Checksum
CVS Concurrent Versions

System
DFS Depth-First Search
DRAM Dynamic RAM
ESP Encapsulation Security

Protocol
FDD Filtering Decision Diagram
FIS Fat Inverted Segment

(Tree)
FPGA Field Programmable Gate

Array
FSM Finite State Machine
HFE Header Field Extractor
HSL Hic sunt leones
ICMP Internet Control Message

Protocol
ICMPv6 Internet Control Message

Protocol version 6
IDD Interval Decision Diagram
IP Internet Protocol
IPFW IPFIREWALL
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
L2 Level 2 of network

architecture

L3 Level 3 of network
architecture

LAN Local Area Network
LMP Longest Matching Prefix
LSB Least Significant Bit
LUP Lookup Processor
MAC Media Access Control
MTBDD Multi-Terminal BDD
MTU Maximum Transfer Unit
NAT Network Address

Translation
NIC Network Interface Card
nsim Nanoprocessor SIMulator
OBDD Ordered BDD
OFDD Ordered FDD
OS Operating System
OSI Open Systems

Interconnection
(ISO 9646-1)

Patricia Practical Algorithm To
Retrieve Information
Coded in Alphanumeric

PC Personal Computer
PCI Peripheral Component

Interconnect
PF PacketFilter
RA Routing-ARP (Table)
RAF Routing-ARP-Filtering

(Table)
RAM Random Access Memory
RBDD Reduced BDD
RFC Request For Comments
RFDD Reduced FDD
RISC Reduced Instruction Set

Computer
RLE Run Length Encoding
ROM Read Only Memory
SRAM Static RAM
TCAM Ternary CAM

5 List of Abbreviations

xii

TCP Transmission Control
Protocol

TTL Time To Live
UDP User Datagram Protocol

VDHL Very High Speed Integrated

Circuit Hardware
Description Language

VLAN Virtual LAN

1

1 Introduction

A router is for the Internet what typography is for a book: it
should stay invisible, just doing its work—allowing end-

points to communicate.

The Internet has become an infrastructure fully comparable with electricity, water,
and gas supply, and the telephone network. The Western civilisation got depen-
dent on the networks we compared the Internet to. The same way people got used
to them, enjoying their benefits and having a serious trouble when some of them
stop working, people are slowly and infallibly getting dependent on the Internet
which has grown to a widely accepted medium for all sort of communication, cus-
tomer relations, entertainment, work, education, and science.

To understand complex systems like infrastructure networks, we decompose
them into smaller parts. The Internet is usually understood as a layered structure.
In the highest level, applications are the purpose of the whole structure. Require-
ments for bandwidth, timing, and data loss depend on applications. The transport
layer supports applications, using services of the network layer. The network lay-
er is responsible for routing datagrams from the source to the destination host.
The link layer moves packets from one node to the next node on the route. In
the physical layer, a physical medium is used to transport signals. Physical links
are passive, the “real work” is done by network nodes that support higher level
services. Active nodes (as opposed to end nodes) transfer packets for others.

The performance and quality of the infrastructure depends crucially on the per-
formance and quality of its active nodes. Unlike the transport layers, the network
layer involves each host and router in the network. The performance of routers—
the units that provide network layer services—affects directly the performance of
the whole Internet. The Internet, the network of networks, relies on routers. Rout-
ers connect the networks together, being a symbol of control in the seemingly dis-
organised world.

While many Internet users have probably never seen a router on their own
eyes (or at least they did not notice it), routers have to perform lots of functions
for them: run the routing protocol in order to establish reasonable routes for their
packets, switch the packets, filter the packets to protect them, and many others.

Many ways of improving performance of routers are possible. Better and more
powerful hardware units can be developed and utilised in the network, better soft-
ware methods can be investigated and implemented. As routers are one of the
most critical components of the Internet, many researchers both from academic
and commercial world work on their development.

Routers usually employ one of three types of switching fabrics [Kurose and
Ross, 2001]. Switching via a bus where input ports of the router transfer packets

1 Introduction Accelerated PC Routers

2

directly over a shared bus, switching via an interconnection network which is a
matrix of buses, and switching via shared memory where input and output ports
work as traditional I/O devices of an operating system.

Besides the switching fabrics, another part of a router that affects critically the
overall performance is the packet classification unit which studies packets and deter-
mines their fates on their journeys through the network.

Classification units are under extreme time pressure. Consider a 10 Gbps link
and packets of 1500 B length. About 833,000 packets per second can be theoreti-
cally transferred through such link. Classification of a single packet on such link
should be managed in less than 1.2 µsec, ideally, as fast as possible.

From a different point of view, routers are generally specialised computing sys-
tems. General purpose computers can be and has been used as routers, starting
from a diskless PCs with the DOS operating system and the KA9Q routing soft-
ware [Karn, 2005] in the late 1980’s to nowadays Pentium 4 stations with a com-
plete IP stack and a plethora of routing protocol implementations.

The architecture of PC-based routers raises questions about improving their
performance. Throughput of such systems can be increased by means of a hard-
ware accelerator that switches packets avoiding them to saturate the system bus.

Although this work is based on abstract properties of a routing system, it is
necessary to present shortly the actual design of the hardware accelerated router
that is the target architecture of this research.

We discuss general architecture of such system in the following Section 1.1.
Problems addressed by this work originate from design of the IPv6/IPv4 hard-
ware accelerator COMBO6. We present overview of COMBO6 architecture in Sec-
tion 1.2. A reader interested in the basic assumptions without basing them on a
concrete architecture may skip Section 1.2. This thesis is based on abstract proper-
ties of the router design. We summarise them in Section 1.3. The problem solved
in this work is stated in Section 1.4. Section 1.5 gives a summary of thesis contri-
butions and Section 1.6 presents an overview of the thesis and a reading plan.

1.1 Accelerated PC Routers

In this work, we are interested in a special type of router based on shared memory:
a personal computer equipped with several network interface cards. Such routing
platform is easily affordable and highly configurable. Off-the-shelf PC can be em-
ployed. PC routers have proven both reliability and functionality of hardware and
software components comparable to middle class commercial routers [Liberouter,
2005].

Work of a router can be divided into two main parts: control and data plane.
In the control plane, the router maintains signalling and control among nodes; in
the data plane, data packets switching is performed. Processing power of a PC is

1 Introduction Target Hardware Architecture

3

typically satisfactory for control plane, on the opposite, data plane functionality is
limited by the PC architecture.

Significant technical limitation of PC-based routers is the maximum theoretical
throughput of their internal busses caused by system resources saturation. Even
with a fast PCI bus (i.e., 64 bit, 66 MHz) that has theoretical throughput 4 Gbps—
taking into account a packet must traverse the bus twice—maximal speed at most
2 Gbps can be achieved. Besides the bus throughput, interrupt latency limits the
achievable throughput especially for small packets. The system bus is shared for
both control and data plane functionality.

This bottleneck can be mitigated if data plane functionality can be at least par-
tially off-loaded to a hardware acceleration card, so that substantial part of the traf-
fic is confined to the card and avoids common buses inside the PC [Novotný et
al., 2003a], [Novotný et al., 2003b]. The original software router and the router
equipped with the accelerator can be seen as alternative implementations of the
identical specification.

Hardware/software co-design [Micheli et al., 2002] is a development methodology
that inspired development of such accelerator. Co-design refers to simultaneously
designing software and custom processors the program will run on (we will see in
the following Section 1.2 how this idea has been exploited in an actual design) and
to splitting computation between software and hardware. Starting from a purely
software PC router, we identified a part worth hardware accelerating (i.e., the data
plane). Both control and data plane functionality is fully preserved in the operat-
ing system, and the operating system controls the accelerator. Moreover, if the
accelerator is not capable to process a packet for any reason, it can send the packet
to the operating system.

1.2 Target Hardware Architecture

Hardware accelerator COMBO6 [Novotný et al., 2002] is a PCI card based on pro-
grammable circuit—Field Programmable Gate Array (FPGA). Besides the FPGA,
the card is equipped with memories and other necessary logic. The complete fami-
ly of cards can be found on project web page [Liberouter, 2005].

The functionality of the FPGA is determined by its microcode (usually called
design). The COMBO6 design is built as a sequence of small processors, nanopro-
cessors, with small instruction sets specialised for particular tasks. They represent
“an extra level of indirection” in FPGA programming. Freely available compilers,
debuggers, and simulators have been developed for them in the project [Höfer,
2003].

1 Introduction Target Hardware Architecture

4

Figure 1.1 COMBO6 firmware architecture

We will describe data plane functionality of the accelerator in Section 1.2.1.
Packet classification unit of the accelerator employs division of computation pow-
er between two types of memories (Section 1.2.2). Software support of the acceler-
ator (Section 1.2.3) covers both data plane and control plane functions—the oper-
ating system handles the accelerator as a usual network interface card when trans-
ferring packets.

1.2.1 Packet Processing in Hardware

We describe in brief the data plane level of the hardware design, i.e., how a packet
traverses the design (Figure 1.1).

The packet enters the system at the incoming interface and is passed to the
Header Field Extractor (HFE) nanoprocessor. The HFE stores the packet (the pay-
load including original headers) into the dynamic memory (DRAM). Meanwhile,
the HFE parses headers of the packet and prepares a structure called Unified Head-
er (UH). The UH is a fixed structure containing information from packet head-
ers that are relevant for routing and packet filtering and “implicit” information
about the packet, like incoming interface and error registers. The HFE also de-
tects various errors in packets and marks them into the UH. The UH structure is
intended to abstract from real header order and to simplify classification by using
a “form,” structure with fixed positions. The UH structure is described in detail
in [Hažmuk, 2005], a short overview is given in Appendix A. Instruction set of the
HFE nanoprocessor includes data transfers, arithmetic operations, and a rich set
of bit manipulation instructions.

Lookup Processor (LUP) classifies packets on the basis of the Unified Header pre-
pared by the HFE. The output of LUP for a packet is a control word describing
where the packet is to be sent and how it will be edited before sending out. Pos-
sible LUP decisions are sending the packet to an output interface (or interfaces),

1 Introduction Target Hardware Architecture

5

sending the packet to the operating system to be processed (the software inter-
face is understood as just a normal output interface), and/or discarding the pack-
et. In all cases, LUP inserts the control word together with packet identification
to its output queue. Details of LUP classification will be described in Section 1.2.2.
LUP nanoprogram must be generated on the basis of the actual operating system
knowledge about routing, ARP, and filtering.

The Packet Replicator (REP) replicates the packet identification and identifica-
tion of an editing program to the Output Queues (QUE). Finally, Output Packet
Editor (OPE) modifies the packet in the way prescribed by LUP and the packet is
sent out. The simplest example of packet editing may be decrementing Time to
Live/Next Hop Count value by one and replacing MAC addresses.

1.2.2 Unified Header and LUP

LUP is a nanoprocessor implemented in the FPGA design [Antoš et al., 2003], [An-
toš and Kořenek, 2004] serving for packet classification. It uses a combination
of Content Addressable Memory (CAM, see Section 2.2.1.1 for explanation how
CAM works) and static random access memory (SRAM) to keep its lookup struc-
ture. We will describe the computation model of the engine. The lookup is in prin-
ciple a traversal through a branching structure logically interpreted as a lookup
program that is run for each incoming Unified Header. Unified Header is stored
in a set of registers of constant widths.

The design of LUP addresses the problem that the width of Unified Header
(which is the maximal number of bits necessary for the routing and filtering de-
cision, about 660 bits in the actual design) exceeds significantly width of largest
available CAMs (272 bits in case of the CAM employed on the COMBO6 board),
especially when IPv6 is taken into account.

The instructions of LUP can be divided into three groups:

1. CAM Step, List is a logical representation of CAM lookup. The instruction
finds a set of Unified Header registers denoted by the List parameter in the
CAM. The registers may be selected arbitrarily. The result denotes the follow-
ing instruction in SRAM to perform. This instruction can be performed at the
start of the lookup program only.

2. Comparison instructions (kept in SRAM) are conditional jumps which com-
pare UH registers with constants. On success, the jump is performed, other-
wise the program continues with the following instruction in the memory.

3. Terminal instruction EXE <status word> returns the result. After reaching
the terminal instruction, LUP inserts the status word into the output queue

1 Introduction Properties of the Target Architecture

6

and gets ready to handle another packet. The status word denotes how the
packet shall be handled by replicators and output editors.

Complete instruction set can be found in [Minaříková and Höfer, 2005]. Pro-
cessing in CAM and in the block interpreting the SRAM instructions is pipelined.
A formal model have been developed to solve problems of memory accesses and
timesharing in the hardware design [Antoš et al., 2004].

1.2.3 Software Support of the Hardware Accelerator

In the lowest level, card drivers provide basic communication with the accelerator.
Moreover, the accelerator behaves as an ordinary network adapter from operating
system point of view (it only switches some packets by itself “behind the scenes”).
A standard network interface card device is provided by the driver.

On the control plane level, operating system kernel uses configuration of net-
work interfaces, routing table, and packet filter setting to decide how to handle
packets. These sources must be combined into the format of the classification en-
gine LUP. Conversion of the lookup tables is provided by a user space daemon
[Novotný et al., 2003b].

1.3 Properties of the Target Architecture

We have described the actual target design that motivated this work. We give an
overview of abstract properties and basic features this work uses as basic assump-
tions:

• The accelerator can give up processing a packet and deliver it to the operating
system. The operating system processes such packets as if they were obtained
from an ordinary network interface card, therefore they are forwarded correct-
ly.

• Lookup engine employs CAM as the “first stage” of the classification process.
The classification is finished by interpreting comparison instructions.

• Width of the CAM is not sufficient to perform match of the full width that is
necessary to classify a packet. Hence, some fields of packet headers cannot
be matched in CAM and must be necessarily handled by comparison instruc-
tions.

1 Introduction Problem Statement

7

• Parts of packet headers matched by CAM (in other words, allocation of CAM
columns) are chosen globally for the whole structure.

• CAM search cannot backtrack. When a packet matches a line of CAM, it must
be resolved completely by comparison instructions assigned to this line.

• CAM lookup and processing comparison instructions is pipelined. (This af-
fects lookup time measurements.)

• CAM and comparison instructions have “distinct abilities” to express certain
types of queries. CAM is suitable to perform exact match or prefix match
queries while comparison instructions handle exact matches and range match-
es well.

We have described motivation leading to the development of hardware accel-
erated PC routers, and general architecture of such systems. We put the ideas into
the real world describing architecture of a real system, hardware accelerator COM-
BO6. The design of the accelerator and the classification engine has abstract prop-
erties described above. We use them as the base for this work.

1.4 Problem Statement

The topic of this work is packet classification. The packets are classified in a hard-
ware classification engine; we have described properties of the engine in the pre-
vious Section 1.3. The classification engine must solve all tasks related to packet
classification in a router, i.e., routing, level 3-to-level 2 addressing, and packet fil-
tering in a single lookup operation, so that a single classification unit is sufficient
for the packet classification task.

The classification engine uses a CAM for a part of its decision and comparison
instructions to finish the classification. We suppose that routing and level 3-to-
level 2 address translation can be solved in the CAM. On the contrary, packet fil-
tering is the entity that adds complexity, it can be solved only partly in the CAM
and utilising the comparison instructions is inevitable to finish the search.

Because of hardware constraints, the classification engine is not sufficient to
resolve all packets. We therefore decompose the classification problem in the fol-
lowing way. If the hardware classification engine is not able to classify a packet
(the engine must be able to recognise its inability to do so), the packet is sent to
the software to be processed.

1 Introduction Contributions

8

The problem studied in this work is how to split the packet classification be-
tween hardware and software parts so that substantial part of the traffic is han-
dled by the hardware engine without increasing the overall complexity of the sys-
tem.

1.5 Contributions

The author of this work claims following contributions to the state of the art of
packet classification in routers.

The central point is the proposal of a method to combine routing, level 3-to-
level 2 address translation, and packet filtering into a single lookup structure suit-
able for a hardware lookup machine balancing computation between CAM and
comparison instructions.

Following important steps had to be done in order to reach the main contribu-
tion:

• A set of previous packet classification methods has been collected and ana-
lysed. It served as a knowledge base for designing the classification engine
based on partial classification in a CAM. (The proposal and design of the classi-
fication engine is a collective work, to which the author explicitly contributed.)

• A formalism to denote routing, level 3-to-level 2 address translation, and pack-
et filtering in operating systems is introduced.

• In order to set a useful formal description of packet filtering, a representative
set of real-world packet filters has been studied and their expression power is
compared. Ability of the target hardware to perform packet filtering is demon-
strated. Principles of transforming packet filters into the hardware classifica-
tion engine are described.

• A method to combine routing and level 3-to-level 2 address translation is stat-
ed formally.

• Filtering Decision Diagrams (FDD), a Binary Decision Diagram based struc-
ture with semantic node relations for packet filter representation is introduced.
Procedures to handle FDDs are defined.

• Complexity estimates of software packet forwarding and packet forwarding
by the developed method are presented.

1 Introduction Thesis Outline

9

• A prototype of the method has been implemented.

• Experimental results evaluating usability of the method in terms of memory
usage and time required to perform a lookup are given.

1.6 Thesis Outline

This work is intended to be read more-or-less linearly; exceptions are noted below
and in introductions of sections containing parts that can be skipped for the first
reading or by a reader pressed for time.

Chapter 2 gives an overview of previous methods of packet classification rele-
vant for this work. A reader familiar with packet classification methods may skip
that chapter.

Chapter 3 states formalisms to describe routing, ARP, and packet filtering. Var-
ious types of packet filters are studied and compared with respect of expression
abilities of the hardware engine. In Chapter 4, a method to combine routing and
ARP tables is presented. Chapter 5 introduces Filtering Decision Diagrams as a
means to represent packet filters, a method to combine them with routing-ARP
tables, and to rewrite them to the lookup engine using a CAM for part of the clas-
sification decision.

Experimental evaluation of the method is described in Chapter 6. Summary
and conclusion is found in Chapter 7.

10

2 Methods of Packet Classification

No single algorithm will perform well for all cases.
– [Gupta and McKeown, 2000]

This survey is intended to guide the reader through previous methods of packet
classification that inspired and are relevant for this work. The chapter is divided
into two main parts, longest matching prefix lookup used mainly to evaluate rout-
ing tables in the following Section 2.1, and packet classification, i.e., classifying
packets on multiple fields, in Section 2.2. Although we try to classify the methods
into several groups, division lines between them are sometimes quite fuzzy.

Among longest matching prefix lookups, many methods are based on tries
that represent keys as sequences of symbols (Section 2.1.1). Numerous improve-
ments have been developed in this area, compressing paths and levels, represent-
ing tries as bitmaps for easy hardware processing and using tries for multidimen-
sional filters. Another group of algorithms prefers choosing length of matching
key first and then finding the output for the key (Section 2.1.2). A plethora of tech-
niques tries to decrease the number of distinct prefix lengths (Section 2.1.3).

The principle of expansion/compression approach described in Section 2.1.4
indirectly inspired the naive method of combining routing with packet filters pre-
sented in Section 5.2. Our final target architecture divides the computation be-
tween two types of memories with distinct abilities. Similar problem has been
studied for hierarchies of RAMs of various speeds—processor cache and system
memory (Section 2.1.5).

Section 2.2 divides methods of packet classification into following main cate-
gories. Exhaustive searches (Section 2.2.1) just test all entities in the set, often em-
ploying hardware parallelism such as content addressable memories (we also use
as a part of our target hardware architecture). Decomposition (Section 2.2.2) splits
multiple field search problems into single fields. Tuple search (Section 2.2.3) uses
the number of bits specified in each field. Decision trees (Section 2.2.4), and deci-
sion diagrams (Section 2.2.5) use parts of keys to make decisions in tree or graph
structures. In Chapter 5, we develop a special type of binary decision diagram to
represent packet filters in this work.

Studying the techniques helped significantly during development of the classi-
fication engine used as the target architecture in this work.

2 Methods of Packet Classification Longest Matching Prefix Lookup

11

2.1 Longest Matching Prefix Lookup

This section gives an overview of existing results in the field of longest (or best)
matching prefix lookup.

2.1.1 Trie and its Variants

We describe the trie data structure and its numerous improvements. Trie is one of
the simplest data structures for best matching prefix lookup.

2.1.1.1 Basic Trie Structure

The trie data structure represents keys as sequences of symbols, not as a whole
like conventional structures do. Let us describe now the basic version of trie as
shown in [Knuth, 1998]. Let us have a finite alphabet Σ. We put |Σ| = m. Trie
is an m-ary tree, its nodes are m-ary vectors indexed by the Σ alphabet. A node
in depth l represents a set of keys starting with a prefix of length l. The node
represents an m-way branch driven by (l + 1)st character of the searched word.

Trie lookup starts at the root node branching by the first character. In a general
case we progress as follows. We take the next symbol of the word, let it be k. Then
the field of the current node indexed by the character k keeps the pointer to the
subtrie, that corresponds the lookup in the unread part of the key. Note that if the
key is not in the trie, we find at least its longest prefix.

The time is linear with respect to the length of the key, the same holds for in-
serting and deleting. Memory complexity becomes a problem in practical applica-
tions. If we store the nodes one-by-one into a linear field, majority of the nodes is
used only sparsely, wasting memory significantly.

2.1.1.2 Dynamic Packed Trie

Dynamic packed trie is an optimised version of trie. It heuristically reduces mem-
ory complexity of the structure. The price is more complicated lookup and mainly
more expensive insertion.

The main idea is that the sparse nodes are kept one mixed into another into a
linear array. A node of the trie uses fields left empty by another one. We have
to distinguish the fields belonging to the node we are working with. It would be
possible if we store the information about the symbol of the alphabet corresponding
to the field. Moreover, we must not pack two nodes on the same starting position,
therefore we need to add a bit denoting node base position.

2 Methods of Packet Classification Longest Matching Prefix Lookup

12

The compression was developed by Liang [Liang, 1983], its comparison to oth-
er methods in a practical application is documented in [Antoš, 2001]. Time com-
plexity is still linear with respect to the key length. The complexity of insertions
increases depending on the implementation of the finding of a suitable position to
store the node. A simple heuristics can be used—we put a node with more than
certain number of used fields to the end of the array.

2.1.1.3 Patricia

Patricia (Practical Algorithm to Retrieve Information Coded in Alphanumeric) is
a structure derived from the binary trie [Knuth, 1998]. The nodes with the only
child are removed and each node keeps the number of bits that should be skipped
before next comparison is performed. Patricia cannot find an exact match but only
a possible match. At the end of the lookup we have to check if the result is really a
match (checking the full string stored in the terminal node).

The main difference between Patricia and binary trie is that Patricia uses only
bits relevant to the decision where to go. This approach is called path compression.

Patricia requires the stored language to be prefix-less, no string may be a prefix
of another. This can be easily achieved by inserting a special end-of-word charac-
ter at the end of each word.

The structure reduces the number of nodes in the tree, nevertheless the expect-
ed depth of the tree (lookup time in other words) remains the same as for binary
tries. Moreover, it is not possible to extract full keys from Patricia, the compres-
sion drops parts of strings.

A variant of Patricia structure has been used to store routing tables in Berkeley
UNIX operating system [Sklower, 1993].

2.1.1.4 LC-trie

The main idea of level compressed trie, LC-trie in short, is as follows. The highest
i complete levels of the trie are replaced with a single node of length mi and this
replacement is propagated top-down. This structure was developed by Anders-
son and Nilsson [Andersson and Nilsson, 1993], [Andersson and Nilsson, 1994],
[Andersson and Nilsson, 1995].

Before we define the LC-trie, we need several auxiliary definitions:

i-prefix String v of length i is called i-prefix of string u, if a string w exists (possi-
bly empty) so that u = vw. The string w is called i-suffix of the string u.

Multi-digit trie Multi-digit trie containing n elements is

2 Methods of Packet Classification Longest Matching Prefix Lookup

13

• for n = 0 an empty leaf,

• for n = 1 a leaf containing that element,

• for n > 1 an inner node of degree 2i for i ≥ 1. For each possible i-prefix P it has
a child that is a multi-digit trie and it contains all i-suffixes of all keys starting
with the string P.

For i = 1 a multi-digit trie becomes an ordinary one. Previous definition does
not cover all generalizations of trie, it allows only powers of two as “compression
factors.”

Multi-digit trie is called dense if it has the same amount of leaves as the corre-
sponding binary trie.

LC-trie Level compressed trie is a multi-digit trie satisfying:

• degree of each node is 2i, where i is the smallest number such that at least one
of the node’s children becomes a leaf,

• each child is an LC-trie.

LC-trie is a binary tree, where the complete levels are replaced with big nodes
and this replacement is propagated top-down. Note that this compression adapts
nicely to the distribution of stored words.

LC-tries have the smallest external path among all dense tries. Expected time
to find a key is Θ(log∗ n) for uniform distribution of keys, where log∗ n is an iterat-
ed logarithm: we put log∗ n = 1 and for n > 1 we define log∗ n = 1 + log∗(dlog ne).

Level compression and path compression may be combined.
Nilsson and Karlsson [Nilsson and Karlsson, 1999] used LC-trie structure for

best matching prefix lookup in an implementation of a IPv4 router. They combine
the basic LC-trie with path compression. To make the implementation efficient,
they developed a compact representation in the only linear array (containing an
exponent of node’s branching factor, skip value for path compression, next node
pointer/full string and output information pointer). They also give a method for
tree building in O(hn) time, where h is the depth of resulting LC-trie1. The algo-
rithm works on previously sorted list of strings.

The problem of the basic LC-trie version is that the only missing string may
cause that it is not possible to build a complete level. The solution may be that
when finding the branching factor, the levels are not required to be fully complete,
but we choose a weaker criterion. We choose a fill factor x, where 0 < x ≤ 1. When

Quite a strange measure depending on the result of the algorithm.1

2 Methods of Packet Classification Longest Matching Prefix Lookup

14

computing the branching factor for a node covering k prefixes we use the highest
possible factor that causes at most dk(1 − x)e empty leaves.

The branching factor at the root node affects the overall performance signifi-
cantly, hence the paper recommends to have a fixed branching factor for the root
node, independently on the value of the fill factor x.

Experimental results for IPv4 (by Nilsson and Karlsson): average depth of the
trie is less than 2 and each node needs one memory access. An extra access is
needed to check whether the found string is really a match (because of the path
compression). If so, the next hop value is read in one more memory access. Mini-
mally 0.5 million lookups per second can be performed in a software implementa-
tion running on Pentium 133 with fill-factor 0.5 and the first branching of the root
on the 16th bit.

2.1.1.5 Tree Bitmap Algorithm

Eatherton’s tree bitmap algorithm [Eatherton, 1999] is a hardware implementation
of multibit trie (see Section 2.1.1.4). The basic idea is the same as with multibit
tries—to compare simultaneously multiple bits of the key. The improvements in
speed are reached by means of sophisticated encoding of trie nodes.

In tree bitmap algorithm, nodes of the multibit trie are coded as pairs of bit-
maps. The Internal Prefix Bitmap identifies prefixes stored in the node in the lin-
earized format; each row of the trie is captured top-down and from left to the
right. The Extending Prefix Bitmap contains a bit for all possible 2i pointers.

All the node’s children are stored contiguously in the memory, allowing to
have just one pointer for all children as each child node can be calculated as an
offset. Finally, the last idea is to store output values for prefixes stored in the node
in a separate array.

Eatherton’s algorithm has been employed in the Fast Internet Protocol Lookup
(FIPL) engine [Taylor et al., 2002a], [Kuhns et al., 2002]. The engine is a finite-state
machine interpreting the tree bitmaps. FIPL is a part of an ATM switch called
Washington University Gigabit Switch (WUGS)2 and is implemented using Field
Programmable Gate Arrays and static RAM. For IPv4, depth of the subtrees was
chosen to be 4, allowing to keep tree nodes in 36-bit words. A pathological look-
up requires 11 memory accesses. It allows—assuming FPGA and RAM running
at 100 MHz—1,136,363 lookups per second for a single FIPL engine in the worst
case.

2.1.1.6 Grid-of-Tries

Grid-of-tries [Srinivasan et al., 1998] is a trie-based memory for multi-dimension-
al filters, such as source-destination address pairs. The basic scheme can be ex-

http://www.arl.wustl.edu2

2 Methods of Packet Classification Longest Matching Prefix Lookup

15

tended to handle filters on more dimensions, for example with port and protocol
numbers.

The structure is motivated with set pruning trees. Let us show the idea behind
set pruning trees first. It is a trie of tries, where we first match the destination
prefix and the result is the source trie. In the source trie we match the source
prefix and obtain the output information. The key is how to connect the source
and the destination tries. This simple scheme suffers from memory blowup as a
source prefix may appear in several tries. A worst case example uses O(N2) mem-
ory, where N is the number of prefixes in the structure.

In order to avoid memory explosion, we observe that filters associated with a
destination prefix D are copied into source trie of D′ whenever D is a prefix of D′.
We can avoid that by pointing D to a source trie that stores output whose destina-
tion field is exactly D. This requires to modify the search strategy so that we must
now search the source tries associated with all ancestors of D. Since each output
is stored just once, the memory requirement is O(NW), where W is the maximal
length of the key. On the other hand, time cost grows to O(W2).

Search time can be improved to O(W) while the memory requirement is kept
linear. The key idea is using precomputation and switch pointers. The method is
quite tricky, therefore we recommend the interested reader to have a look at the
Section 5 of [Srinivasan et al., 1998].

Based on the observation that every packet matches at most several source-des-
tination prefix pairs present in the rule set, Baboescu et al. [Baboescu et al., 2003]
extend the grid-of-tries approach with path compression. The method is again
based on precomputation that avoids backtracking.

2.1.1.7 Multi-bit Trie with Expansion

Another version of trie a bit shifted to use in hardware is presented by [Moestedt
and Sjödin, 1998]. They use a multi-bit trie with number of bits in levels, typically
chosen in order to break the key into three to five pieces. The prefixes are expand-
ed up to the nearest level. There are three types of nodes: valid, part, and invalid
ones. A valid node represents an entry in the database. A part node represents a
prefix of a valid entry, and an invalid node does not represent a valid entry in the
database, it has a special meaning for the lookup algorithm.

To simplify the lookup process, we want the tree to satisfy two conditions: All
possible children of a part node are present in the trie (so called prefix group; the
added prefixes that do not appear in the database are marked is invalid), and no
node is allowed to be valid and part at the same time. If a prefix exists that is both
valid and prefix of a valid prefix, it appears several times in the trie, once as a part
node and then expanded into a prefix group where all entries are valid.

To find the result, the trie is searched from the shortest prefix up to the first
valid or invalid node. The lookup time is linear wrt. the number of levels of the
trie. There is a trade-off between memory and lookup time as having less trie

2 Methods of Packet Classification Longest Matching Prefix Lookup

16

levels causes more auxiliary entries to be added. The paper [Moestedt and Sjödin,
1998] provides measurements in a practical application.

2.1.2 Binary Search on Prefix Lengths

Binary search over prefix lengths [Waldvogel et al., 1997], [Waldvogel et al., 2001]
is based on three ideas: hashing to check if the address matches a prefix of given
length. Then, binary search through prefix lengths is used and finally some pre-
computing is done to prevent backtracking.

First, we show the linear lookup on tables containing prefixes of the same
length and later we will refine this basic scheme. We divide the prefix database
according to their lengths, creating a separated hash table for each length. To find
the longest prefix for the key D we start from the table of the longest prefix, we
extract the appropriate number of bits from D and we try to find it in the hash
table. If it succeeds we have the best matching prefix. Otherwise, we continue test-
ing tables of the nearest smaller prefix length. Having a hash function computable
in linear time, this lookup is linear with respect to the number of distinct prefix
lengths in the database.3

Another possibility is to go through the distinct prefix lengths using binary
search. The problem is that we need some notion of “shorter” and “longer” in
terms of prefix lengths. Alas, such kind of information cannot be obtained from
hashing. Hashing answers only “hit” and/or “miss” but nothing in between.

From the other side, when we find a matching field, it does not mean that it is
the best matching one. There may be a longer one. Hence, when we match, we
have to continue testing longer prefixes, too. More practically, when we find a
match we remember it and go on checking longer tables. We keep a track of the
so far best matching candidate. On the contrary, if we miss, it only has sense to
continue among shorter prefixes. To make this strategy correct, we have to add
prefixes of all longer lengths to all tables of smaller lengths (if they are not already
there) to lead the search. Those dummy prefixes (called markers) allow the algo-
rithm above to get to longer prefixes.

If we add such an auxiliary information, natural question is how much mem-
ory we will have to pay. It turns out that markers do not have to be added to all
nodes but only to a logarithmic number of them. Using a sophisticated precom-
putation (we again refer to the paper) and pressuming we have a constant-time
hashing function, we can achieve lookup time O(log Wd), where Wd is the number
of distinct prefix lengths in the database.

This basic scheme may be improved. One possibility is to move the top-speed
lookup towards the most probable case (paying some performance loss in the

This assumption is very important and of course quite difficult to achieve, the weakest point of the3

technique.

2 Methods of Packet Classification Longest Matching Prefix Lookup

17

worst case). This can be done introducing some asymmetry into the structure,
pushing the most probable length to the root (for IPv4 typically 24 bit length). Ob-
viously, some paths may degenerate to a pure linear search which is unacceptable.

Another improvement may be mutating binary search. When we get a matching
entry in the hash table and we move to a new subtree, it is sufficient to stay in this
subtrie. It creates a whole network of binary trees, getting a match causes chang-
ing the tree to a more specialized one. In other words, the binary tree changes,
mutates, dynamically during the search.

Each field in the hash table can contain a description of the new tree special-
ized for prefixes of this table. Waldwogel et al. do not show any theory for this
method, they only declare that in all analysed databases the number of hash look-
ups decreased from five to four in the worst case and the average number of hash
table lookups was two for IPv4.

This scheme can be generalised to more dimensions [Waldvogel, 2000].

2.1.3 Controlled Prefix Expansion

Controlled prefix expansion transforms a set of prefixes into an equivalent set of
prefixes with fewer prefix lengths [Srinivasan and Varghese, 1999].

The prefixes are padded with all possible strings of zeroes and ones that are
missing in the database to reach higher prefix length. If a string we should add
with this process is already in the database, we do not add it, we leave the original
one in its place. It is obvious that when performed naively, prefix expansion may
significantly increase storage. For example, the whole prefix lookup problem can
be converted into the ordinary array search if we expanded all the prefixes in the
database to the full length. The search would be especially easy, nevertheless this
solution is unacceptable as the array would require 2128 fields for IPv6.

On the other hand, prefix expansion can improve many lookup schemes. We
want the number of distinct prefix length to be as small as possible. The paper
recommends the initial lookup (16 or 24 bits for IPv4) as the start of the process.
The model may be more general, picking the lengths dynamically. We will show
several methods of choice of lengths in the following sections.

2.1.3.1 Choosing Optimal Levels

Using “brute force” to choose the optimal solution is not possible due to the enor-
mous number of combinations to test. This naturally leads to dynamic program-
ming. We will describe the method by [Srinivasan and Varghese, 1999]. Assume
we wish to minimize the total number of expanded prefixes using only k lengths.
In the first step, they compute the histogram of prefix lengths in the database. The
last level lk must be the total key length. In the second step, we reduce the prob-
lem to placing next-to-last level lk−1 and covering the remaining lengths using k−1

2 Methods of Packet Classification Longest Matching Prefix Lookup

18

lengths. If we compute the storage required for each value, in the third step we
can choose the minimal value.

The above indicated recursive algorithm reduces the optimal level picking to
Wk subproblems, where W is the key length and k is the number of desired levels.
Time complexity is O(W2k). The algorithm minimizes the number of expanded
prefixes. The final goal is to reduce the total storage required; it depends on the ac-
tual storage method. For example, in tries some added prefixes may increase the
storage significantly while others may share portions of the trie structure. There-
fore an application specific solution is needed.

Let us now consider a multibit trie with prefix lengths expanded to certain lev-
els. To search for the best matching prefix, we break the key into chunks corre-
sponding to the lengths of the trie and use the chunks to follow the path in the
trie until we reach a null pointer. Following the path, we keep track of the last
output associated with the path. The last information we discovered is the longest
matching prefix. The search time is O(k), where k is the maximum path through
the expanded trie.

When inserting, we first simulate search on the string up to the last chunk. We
either terminate by reading the last chunk or reading a null pointer. In both cases
we finish the chunk inserting the remaining prefix bits there.

For deletion, no way exists to find out which expanded prefixes belong to a
certain prefix. The easiest way to handle deletions is to keep an auxiliary one-
bit trie in the memory containing the prefixes in the pure, unmodified form. It
could serve both insertions and deletions as a initial data structure from which
the “productive” compressed version is derived. The complexity of insertion and
deletion is O(W) to search plus the time to reconstruct trie node O(Sm), where Sm is
the maximum size of the node.

2.1.3.2 Adaptive Level Cutting

The next natural step is to allow the expansion lengths differ in various subtries
[Sahni and Kim, 2003]. Complexity of the expansion algorithm increases with a
multiplicative factor of n—number of prefixes in the database, the total time com-
plexity is therefore O(nW2k). By reformulating the dynamic programming expan-
sion method, they achieve complexity O(nWk). Nevertheless, if we compare this
method with LC-tries, we discover that various paths lead to the same result. This
structure is nothing else than just LC-trie. (Moreover, Sahni and Kim declare that
LC-trie is a special case of their structure with the special property that all levels
are completely packed. This is not completely true as there is a more sophisticated
version of LC-trie allowing to set fill factor for packed nodes.)

2 Methods of Packet Classification Longest Matching Prefix Lookup

19

2.1.3.3 Applying the Ideas to Other Methods

The ideas of prefix expansion are quite general and do not have to be related on-
ly to trie searches. They can also be applied to binary search on levels (see Sec-
tion 2.1.2) [Sahni and Kim, 2004].

Time complexity of binary search on levels depends logarithmically on the
number of distinct lengths in the database. By expansion, we can decrease the
number of distinct lengths, paying with some increase of storage. Nevertheless
we needed markers to make the searches work correctly. The number of markers
actually decreases. When n prefixes are expanded so that only W/2 lengths are
left in the database the number of prefixes doubles to 2n. The worst case number
of markers is then n(log2 W − 2). It means that the total number of hashes can be
reduced by one without changing the worst case storage requirement.

Compressing the levels for hash table search produces serious problem of find-
ing a hash function. The requirement of having perfect hash function is very
strong. Sahni et al. use a bit weaker criterion, semi-perfect hash function. Semi-
prefect hash function is a hash function that guarantees that the number of collisions
in a bucket is bounded from above by a constant (known in advance). This al-
lows using fixed memory for the list of conflicting items. Obviously, this approach
wastes memory as the lists may be used in a small number of cases.

The problem is that when reducing the number of levels causing the hash ta-
bles large, finding a semi-perfect hash function may be very costly operation, it
can take even minutes to do.

2.1.4 Expansion/Compression Approach

Let us now have W-bit key to find the longest prefix. Expansion/compression
method [Crescenzi et al., 1999a] starts from a fully expanded table with 2W entries
and tries to compress them. We can expect a limited number of different outputs
among the 2W entries in the table. Representing the relation between keys and
outputs as strings, the strings can be compressed in order to provide an implicit
representation of the strings in the table.

In the expansion phase, we derive implicitly the outputs for all the 2W keys in
the obvious manner (cf. Section 2.1.3, the process is similar). In the compression
phase, clusters of prefixes sharing identical outputs are compressed using Run-
ning Length Encoding. A lookup in IPv4 can be performed in just three accesses
(one for each half of the address, the final one to pick up the output).

2 Methods of Packet Classification Longest Matching Prefix Lookup

20

2.1.5 Introducing Memory Constraints

Cheung and McCanne [Cheung and McCanne, 1999] study possibilities of divid-
ing the best matching prefix search into a hierarchy of RAM memories having dif-
ferent sizes and speeds. The structure is expected to be interpreted by a general
purpose processor, first type of memory is the processor cache, the other the main
system memory. The method is suitable for architectures where cache movements
can be explicitly requested by the native code. When cache control is not available,
the method behaves as an approximation as the most often accessed entries are
planned to the fast memory and they probably stay in the cache.

Suppose that we have two types of memories, with sizes and access times
(S1,T1) and (S2,T2). Each prefix j has an associated probability of appearance p j.
Assuming independent packet arrival (which is not very realistic), the average
prefix retrieval time is C =

∑
j p j(a jT1 + b jT2), where a j (resp. b j) is the number of

type 1 (resp. 2) memory accesses needed to retrieve the prefix j. We moreover re-
quire that the lookup tables kept in each type of memory do not exceed the capaci-
ty of the memory. The problem now is how to structure the set of tables that mini-
mizes average prefix retrieval time C while satisfying memory size constraints.

Cheung and McCanne use a generalized LC-trie as the base structure. By gen-
eralized LC-trie we mean an LC-trie (see Section 2.1.1.4) where all the levels are
complete. This can be achieved by prefix expansion. The lookup structure is cre-
ated in two stages. First, the set of prefixes is transformed to a complete prefix
trie. Stage 2 transforms it to a generalized LC-trie implemented using lookup ta-
bles. The first transformation is trivial, stage 2 transformation affects the lookup
performance directly and this is the focus of the optimisation.

The article [Cheung and McCanne, 1999] gives two optimisation algorithms
to minimize the cost value C. The dynamic programming algorithm runs on av-
erage in O(HnS2

1) time, where H is the height of the complete binary trie (32 for
IPv4, 128 for IPv6), n is the number of nodes, and S1 is the size of type 1 memo-
ry. Although the expression looks polynomial, in fact it is exponential in the size
of the input, therefore this is a pseudopolynomial algorithm. The other method
is a Lagrange approximation algorithm, with average complexity O(HnA), where
A is the number of binary searches for Lagrange multipliers (in tests, a value
around 10). The second algorithm has much better running time but it returns
an approximation of the optimal solution. Both the algorithms are quite complex,
therefore we do not describe them here and we refer to the paper. The result of the
algorithms is a schedule how to place tables representing levels of the LC-trie into
memories.

2 Methods of Packet Classification Packet Classification

21

2.1.6 Other Approaches

Wang [Wang, 2005] notes that lookup performance in routers is degraded by un-
suitable methods of address allocation. The IPv4 allocation schemes and small
address space led to a common situation when a single entity has several non-con-
tiguous block of address prefixes. It causes bigger routing table structures. The pa-
per describes strategies of allocation taking address aggregation as a measure. A
growth-based adaptive method is proposed, statistically evaluated and simulated.
Although it is not directly related to this work, it is interesting to note that even
“administrative” steps may be taken to keep routing table growth under control.

Purely hardware solutions to the problem of finding the best matching prefix
can be found. Pao et al. [Pao et al., 2002] propose a hardware architecture based on
binary tries partitioned into blocks of four levels that can be searched in parallel.
The paper concludes that extending the scheme to IPv6 requires further research.

2.2 Packet Classification

For mere routing decision, finding the longest matching prefix of the destination
address is sufficient. More general packet classification, i.e., classification on mul-
tiple packet header fields, is necessary for many network functions including fire-
walling, monitoring, and Quality of Service.

Entries for packet classification are called rules. A rule base or classifier is a finite
sequence of rules. The packet classification problem is to find the first matching
rule for each incoming packet at a router [Singh et al., 2003].

Although practical implementations of firewalls allow filtering on nearly all
fields that can be found in packet headers (up to application level headers and
even to scanning packet contents), the comparison base common in the literature
is a “standard 5-tuple search,” i.e., classification on source and destination ad-
dresses, source and destination port, and protocol type. It is a well chosen subset:
address test is usually a (longest) matching prefix search, port numbers require
range searches (the value should lie in the range specified), and protocol type is
often an exact match query. From that point of view, classification schemes can
be often widened to an arbitrary number of fields “by conventional means,” just
adding the fields to the scheme without the need to introduce additional types of
searches.

The following survey is partly inspired by the classification given in [Taylor,
2004].

2 Methods of Packet Classification Packet Classification

22

2.2.1 Exhaustive Search

The easiest way to solve any finite searching problem is just to test all the entities
in the set. Most real-world packet filters use linear search to match their rules, i.e.,
the rules are just checked one-by-one until a match is found. This usually requires
minimal storage and time linear to the number of rules (multiplied by complexity
of testing a rule).

2.2.1.1 Content Addressable Memory

Search time may be improved introducing some level of paralellism. In the ide-
al case, we may match all the rules concurrently using a specialised hardware—
ternary CAM (TCAM).

As opposed to standard (random access) computer memory where the user
supplies an address and the memory returns the content of the memory cell ad-
dressed, a Content Addressable Memory (CAM) is supplied by the data and returns
an address or addresses where the data is stored in the memory. The search is
performed in parallel, by brute force hardware. Input keys are compared against
every CAM entry simultaneously, thus performing the search in a constant num-
ber of clock cycles, independently on the position of the data in the memory. CAM
designs therefore have a comparison circuit for each bit of the memory.

Binary CAM searches data containing only binary zeroes and ones. Ternary
CAM (TCAM) supports a third state called don’t care and often written as “X” that
means that value of this bit is not taken into account during the search. The third
state is usually implemented by adding a mask bit denoting whether the data bit
should be checked (this doubles the storage required and adds complexity to the
circuitry). Ternary CAM can be used for longest matching prefix search if the pre-
fixes are sorted in non-increasing prefix lengths.

The price paid is in general (adapted from [Taylor, 2004])

1. high per-bit cost compared to other storage technologies,

2. high power consumption,

3. limited scalability to long keys.

2.2.1.2 Modified CAM Schemes

Spitznagel et al. [Spitznagel et al., 2003] study disadvantages of TCAM solutions,
addressing mainly storage inefficiency and power consumption. They propose a
scheme called Extended CAM (E-TCAM) specially adapted to the task of packet
classification. Range checks are directly implemented in hardware at the price of
increase of number of transistors needed. It avoids the need to replicate rules to

2 Methods of Packet Classification Packet Classification

23

cover a range query that cannot be easily converted to a bit mask. Power con-
sumption is reduced by limiting the number of active regions of the device during
the search. Each region has an associated index filter covering all filters in the
block. A search first checks the index filters. In the second step, only the blocks
with matching index filters are searched. Unfortunatelly, the device was tested on
simulation only; it has never been produced physically.

Another scheme by Taylor and Spitznagel called LECAM (Label Encoded Con-
tent Addressable Memory) [Taylor and Spitznagel, 2005] decomposes the search
into stages. The first stage is a collection of parallel search engines, one for each
field. The engines are optimised for the type of query associated with the field
(e.g., exact matching for transport protocol). The output of each engine is a set of
labels corresponding to the packet headers. When the set of labels is resolved the
results are fed to a modified CAM structure that returns the set of matching filters
for the packet.

Ways to reduce power consumption of CAMs have been studied by Zane at al.
[Zane et al., 2003] for the task of finding the longest matching prefix. CAMs are
available that allow reducing power consumption by means of addressing smaller
portions of the memory. The portions can be selectively included in the current
search. The task is therefore to partition the CAM (containing routing table) in-
to chunks. Given an input, right parts to search must be selected. Finally, for a
given partitioning scheme, the size of the largest partition must be determined so
that hardware designers can allocate a power budget. The Bit Selection architec-
ture uses hashing to determine the chunk to search. The sets of hashing bits are
selected by heuristics. Other approach, Trie Based Partitioning, uses a small in-
dex TCAM (that has to be switched always on) to select chunks of the main CAM.
A post-order split algorithm is described in the paper to partition the main CAM
contents. Lu [Lu, 2004] proposes another algorithm that improves the number of
entries each chunk contributes to the index CAM.

2.2.2 Decomposition into Single Fields

Techniques for single field searches have been studied for a long time. It is a nat-
ural approach to decompose the multiple field search into a sequence of single
field searches. For hardware implementation, this immediately creates a signif-
icant chance for parallelization as in most of the methods, their stages may be
pipelined.

The main issue in combining single field search approaches is how to aggre-
gate the results efficiently. Stages of the lookup process can return sets of match-
ing results that have to be further restricted. The goal is to limit the number of
intermediate results by a reasonably small number.

2 Methods of Packet Classification Packet Classification

24

2.2.2.1 Recursive Flow Classification

Recursive Flow Classification [Gupta and McKeown, 1999] is based on “number-
ing classification classes.” Packet headers are split into logical chunks and values
for the chunks are numbered. For example, if the filter tests port numbers 25, 80,
≥ 1024, we generate classes for the possibilities (we add a class for “any other
number”). This results into four classes that can be encoded with two bits. In the
following phase, we combine chunk classifications into all possible combinations
recursively taking equivalences into account.

Classification with this method takes chunks of packet headers and finds class
numbers for their values. The numbers serve as memory indexes to find com-
bined classes. In the simplest case, mere concatenation of the class numbers can
work satisfactorily; other ways to combine the numbers are possible. The classifi-
cation process results into a single number denoting the identification of the class.

The main drawback of the method is large preprocessing time and memory
requirements for large classifiers.

2.2.2.2 Bit Vector Approaches

Bit vector methods are targeted to a hardware implementation. Lakshman and
Stiliadis [Lakshman and Stiliadis, 1998] developed a method called Parallel Bit
Vectors. Assume that filters are sorted according to their priorities. The filters
are viewed geometrically and each filter (a hyperrectangle) projects to an axes of
the k-dimensional space. Beginning and end points of the hyperrectangles define
elementary intervals.

Each elementary interval has an assigned m-ary bit vector where m is the num-
ber of filters. Each bit corresponds to a filter, sorting filters by priority. The vectors
have ones in positions where the filter overlaps the associated elementary interval.
Those structures are constructed for all dimensions independently.

Searching is done separately for each dimension, obtaining bit vectors. After
AND-ing bit-wisely all the vectors, the first ‘1’ bit denotes the highest-priority
matching filter.

The scheme can be improved taking into account statistical observations on
real filter set: the bit vectors tend to be sparse. Baboescu and Varghese [Baboes-
cu and Varghese, 2001] introduced the Aggregated Bit Vector algorithm that parti-
tions the bit vectors into chunks and only chunks containing ones are stored.

2.2.2.3 Crossproducting

Crossproducting [Srinivasan et al., 1998] is based on the following. Filter database
is sliced into columns. Each column contains all distinct prefixes of the particular
field. A packed is classified separately in each column. To combine the results,

2 Methods of Packet Classification Packet Classification

25

we build a table of crossproducts, i.e., we precompute the result for each possi-
ble combination of column results. The exponential memory needed for the basic
scheme can be reduced by precomputing the results lazily and keeping a limited
amount of them in a cache.

2.2.2.4 Distributed Crossproducting of Field Labels

Distributed Crossproducting of Field Labels (DCFL) [Taylor and Turner, 2005] is
based on two observations. First, a number of unique filter fields that match a giv-
en packet is limited in real rule sets. Second, number of combinations of unique
filter field values that match a packet is small.

The method is intended for parallel hardware, therefore search engines for fil-
ter fields are distributed. Moreover, each field can be searched using a special
method suitable for that task. For each filter field, we list all distinct values and as-
sign numbers to them. To combine result for the first pair of fields, we construct a
crossproduct table containing only pairs that occur in the rule set. Then we create
similar combination for the first pair and the third field, etc.

Classification of a packet starts with classifying its fields separately (and possi-
bly in parallel). Each field returns a set of matching filters. We take the first pair
and we remove all impossible pairs (i.e., we test them for set membership against
the set of possible values). We continue the same way until all sets are combined.

2.2.3 Tuple Search

We will describe the basic method by Srinivasan, Suri, and Varghese [Srinivasan et
al., 1999] called Tuple Space Search.

A tuple is defined by the number of specified bits in each field. Tuple search
is based on the observation that number of distinct tuples is significantly smaller
than number of filters in the rule set.

For addresses, the number of specified bits is defined as the number of non-
wildcard bits in the prefix. For protocols, we set it to ‘1’ if and only if the protocol
is specified. Port ranges are less straightforward. Let us suppose that all port
specifications in the filter set are not overlapping. We can then build a “nesting
structure” of port ranges. Level of nesting is used as the tuple value, number of
the range in a given level identifies the range.

All filters that map to a particular tuple share a mask, i.e., they have the same
IP prefix lengths, etc. We can concatenate the required number of bits from each
field to form a hash table. Testing all filters mapped to the tuple requires con-
catenating prescribed number of bits and checking the hash. Theoretically, all the
tuples can be checked in parallel (although it is not easy in practice as the number
of tuples is not known in advance).

2 Methods of Packet Classification Packet Classification

26

Other improvements are possible, reducing the number of tuples that have to
be searched exhaustively (e.g., Pruned Tuple Space Search). This approach is prob-
ably not easily scalable for IPv6 because of the expected length of address prefixes.

2.2.4 Decision Trees

A simple approach to classification on multiple fields is construction of a decision
tree. Leaves contain filters or their subsets. To classify a packet, we use its headers
as a search key. Leaves contain best matching filter. Construction of decision trees
is complicated by the fact that filters contain several types of searches. Typically,
all the types are converted into one that is used in the structure.

Some of the algorithms based on decision trees are called “cutting” algorithms.
These algorithms understand packet headers as points of a k-dimensional space.

Grid-of-tries we discussed in Section 2.1.1.6 can be understood as a decision
tree method. This scheme was believed not to be easily extensible to more fields
than two [Gupta and McKeown, 1999]. Baboescu et al. developed a method called
Extended Grid-of-tries (EGT) [Baboescu et al., 2003] that supports classical 5-tuple
classification.

In following sections, we will describe other examples of cutting algorithms.

2.2.4.1 HiCuts

Hierarchical Intelligent Cuttings (HiCuts) by Gupta and McKeown [Gupta and
McKeown, 2000] view the classification problem geometrically. HiCuts preprocess
the filter set to build a decision tree that contain a small number of filters (up to a
threshold). All tests are converted into range matches in order to avoid replication.
Each node is cut into equal-sized partitions along a single dimension.

Headers of a packet are used to traverse the tree. When a leaf is reached it is
searched linearly. Several heuristics for minimizing the tree depth are described in
the paper, such as minimizing the reuse of child nodes, eliminating redundancies
in the tree, etc.

Very similar approach was developed independently by Woo [Woo, 2000].

2.2.4.2 FIS Trees

Fat Inverted Segment (FIS) Trees [Feldmann and Muthukrishnan, 2000] is a frame-
work for packet classification using independent field searches. Projections of the
k-dimensional hyperrectangles to the “edges” define elementary intervals. An FIS
Tree is a balanced t-ary tree. Each node stores a set of ranges. Leaves correspond
to elementary intervals on the edges. The union of the range sets of the nodes
visited on the path from the leaf node associated with the elementary interval cov-
ering a value to the root is the set of ranges that contain the point.

2 Methods of Packet Classification Packet Classification

27

Building this structure starts by building the FIS Tree on one axis. For each
node that contains a non-empty set of filters, we build an FIS Tree for the follow-
ing axis in the search. During the search, we start by finding the elementary in-
terval covering the first packet field and continue following pointers to the sets
of elementary intervals covering projections of the following fields. We remember
the highest-priority result found, it is the result when the search terminates.

2.2.4.3 HyperCuts

HyperCuts classification scheme [Singh et al., 2003] is, like HiCuts, based on a
decision tree structure. Each node in the HyperCuts represents a k-dimensional
hypercube. A node in the decision tree represents a decision taken on the most
representative dimensions. It allows to simulate several cuts of HiCuts in a single
step.

The pre-processing algorithm identifies fields (i.e., dimensions) with highest
number of distinct elements. For each such dimension it determines the number
of cuts to be performed. The decision is based on heuristics. It is based on a trade-
off between the memory size available and the depth of the tree. (Balancing the
two quantities is possible.) Finally, the structure is cut. The number of node’s
children depends on the number of dimensions in the cut.

The algorithm may be refined by node merging, removing overlapping rules
that produce unreachable parts of the structure, pushing common rule subsets
upwards (if all child nodes contain an identical subset of rules the subset can be
moved to the parent node), and similar methods.

2.2.5 Decision Diagram Representations

The motivation to develop classification methods we have described so far is pri-
marily to make lookups more efficient, to increase throughput and minimize laten-
cy. Another issue appears in practice when working with lists of filtering rules:
the lists become more complex and therefore more difficult to understand. Filters
are often maintained by several people. The effect of changing, deleting, and/or
adding a rule may not be obvious. This issue is addressed by representing filter
lists in a way that allows formal checking.

In general, decision diagram is a special graph that leads the search through a
series of tests resulting in a terminal node that contains the result.

2.2.5.1 Binary Decision Diagram

Let us define the basic Binary Decision Diagram (BDD) structure and its special
types [Bryant, 1986].

2 Methods of Packet Classification Packet Classification

28

Binary Decision Diagram (BDD) BDD is a rooted directed acyclic graph with

• one or two nodes of out-degree zero labelled 0 or 1, and

• a set of variable nodes u of out-degree two. Variable var(u) is associated with
each node and the outgoing edges are given by functions high(u) and low(u).

Ordered BDD (OBDD) A BDD is ordered (OBDD) [Bryant, 1986] if on all paths
through the graph the variables respect a given linear order x1 < . . . < xn and4

• (uniqueness) no two distinct nodes u and v have the same variable and low-
and high-successor, i.e., var(u) = var(v) and low(u) = low(v) and high(u) =
high(v) implies u = v, and

• (non-redundancy) no variable node u has identical low- and high-successor,
i.e., low(u) 6= high(u).

It can be shown that for any Boolean function exactly one OBDD exists that
represents it. Moreover, Bryant gives a procedure to transform a BDD into the
ordered form. Unfortunately, it can result into an exponential increase in number
of nodes.

Hazelhurst et al. [Hazelhurst et al., 1998], [Hazelhurst et al., 2000] propose a
method to convert a rule set into an OBDD.

Several technical steps must be taken. Numbers are represented as bit vectors.
For example, representing the 4-bit number we use the bit vector 〈x3, . . . , x0〉, each
xi is a Boolean variable. Testing x = 3 means 〈x3, . . . , x0〉 = 〈0, 0, 1, 1〉 that results in
Boolean expression ¬x3 ∧ ¬x2 ∧ x1 ∧ x0.

We assign each protocol a number 0, . . . ,np − 1. The numbers can be represent-
ed by mp = log2 np bits, so we use variables π0, . . . , πmp−1 to encode them. Similarly,
we use variables for bits of addresses and ports. Checking address prefixes is obvi-
ous, we just test up to the mask length. Port range queries are transformed using
equivalence

p ≤ n⇔
n∨

i=0

p = i

into logical expressions.
The whole rule set can be defined recursively (describing also immediately the

formulae):

BDD satisfying uniqueness and non-redundancy is sometimes called reduced BDD. Moreover, when4

people speak about BDDs they actually mean OBDDs. One has to be very careful about definitions.

2 Methods of Packet Classification Packet Classification

29

• If the rule set is empty, no packets are accepted so the Boolean expression is
False.5

• If the first rule is accepting then the packet will be accepted if it matches the
rule or if it is accepted by the rest of the ruleset.

• If the first rule is rejecting then the packet will be accepted if it does not match
the rule and it is accepted by the rest of the ruleset.

The size of the OBDD is dependent on variable ordering. Problem of finding
an optimal ordering is known to be NP-complete [Bollig and Wegener, 1996], in
practice, heuristic routines for dynamic variable ordering are employed.

Although it is beyond scope of this thesis, we briefly mention interesting ideas
on testing and verification of packet filters using the BDD representation.6 One
possibility to validate is to ask ‘what if’ questions (e.g., Do we accept packets on
port 25? What packets do we accept from network 147.251.54.0/24?). The
queries can be expressed as Boolean conditions and tested against the set. Even
changes in the rule set can be evaluated. If the original set and the changed set are
represented as BDDs R1 and R1, queries can be coded as conditions. For example,
“are there packets accepted by R2 but not R1” as ¬R1 ∧ R2.

Sinnappan and Hazelhurst [Sinnappan and Hazelhurst, 2001] describe an ap-
proach to convert BDD representation of a packet filter onto an FPGA. The FPGA
is intended to work as a coprocessor of a network adapter.

The ruleset is directly implemented as circuit classifying packets, using recon-
figurability of FPGAs. The Boolean expression logic is first converted to a circuit
logic definition (VHDL in this case). The circuit is mapped onto the FPGA using
commercial software (and one should keep in mind that this step may be time con-
suming, in order of tens of minutes). The resulting FPGA reads the packet infor-
mation and generates either ‘accept’ or ‘deny’ output signal. Full details including
a formal model can be found in Sinnappan’s thesis [Sinnappan, 2001].

2.2.5.2 Interval Decision Diagrams

Although the BDD-based schemes work well in specialised hardware, granularity
of their decisions is too subtle to suit general purpose processors. Processors have
significant overhead to process a single bit a time, reading a word containing sev-
eral bits—depending on architecture—is necessary. Moreover, extracting a single
bit causes extra overhead both in processing and storage.

Assuming deny policy as the default.5

An interested reader may see, e.g., papers [Mayer et al., 2000], [Eronen and Zitting, 2001], or [Al-Shaer6

and Hamed, 2004].

2 Methods of Packet Classification Packet Classification

30

In order to avoid this drawback, Christiansen and Fleury [Christiansen and
Fleury, 2004], [Christiansen and Fleury, 2004] focus on using an Interval Decision
Diagram (IDD) [Strehl and Thiele, 1998b] to perform classification. IDDs classify
on integer numbers instead of mere bits, each node is associated to an interval.
Each edge is linked to another node or to a Boolean terminal.

Interval Decision Diagram (IDD) We define an IDD node first. Let x be an inte-
ger variable defined on domain Dx ⊆ N and t a logic formula on integer variables.
Let {Ii} for 0 ≤ i ≤ k be a partition of Dx.
We call t an IDD node if one of the following holds:

1. t ∈ {True,False}

2. t = (x ∈ I0 ∧ t0) ∨ . . . ∨ (x ∈ Ik ∧ tk),

where ti are IDD nodes. We denote t = x → (I0, t0) . . . (Ik, tk). From the “processing
point of view” this means if the variable x belongs to interval Ii then traverse to
node ti.
Let var(t) be the variable tested on node t, i.e.,

var(t) =
{ x if t = (x ∈ I0 ∧ t0) ∨ . . . ∨ (x ∈ Ik ∧ tk)

t if t ∈ {True,False}.

We call an IDD node a root if it has no predecessor. Finally, IDD is a set of IDD
nodes with just one root. An IDD is called ordered if on all paths through the graph
the variables respect a given linear order.

All usual logical operations (negation, and, or, etc.) can be performed on IDDs.
It allows to encode filters as IDDs and manipulate them through Boolean algebra.
Optimisation can be performed on resulting IDD, like interval merging and/or
pruning nodes with the only outgoing edge.

The remaining problem is how to transform packet filters into IDDs. The ap-
proach of Christiansen and Fleury is as follows. Let H be the finite set of all pos-
sible headers and Π = {accept, deny} the set of policies. A rule is a pair of a set of
headers and a policy: r = (h, π) where h ⊆ H and π ∈ Π.

We define a filter ϕ as a set of rules over 2H
×Π

ϕ = ((h1, π1), . . . , (hn, πn)).

By extension, the filter can be understood as a function that maps headers to sets
of policies, i.e., ϕ: H→ 2Π. The function will be defined as

2 Methods of Packet Classification Packet Classification

31

ϕ(p) = {πi ∈ Π | p ∈ hi}.

We define an unambiguous filter as a filter where the system of packet headers
{h1, . . . , hn} is a partition of H. An unambiguous filter can be transformed into an
equivalent IDD. Unfortunately, Christiansen and Fleury do not provide a descrip-
tion of the algorithm; they only show several examples.

As real-world packet filters are not unambiguous, a transformation to ensure
this property is needed. Let us first formalise first match filters. We say that a
filter ψ = ((h1, π1), . . . , (hn, πn)) with a relation < such that

(hi, πi) < (h j, π j)⇐⇒ i < j

is an ordered filter.
We extend the definition of the ordered filter into a function ψ: H→ Π:

ψ(p) = {πi ∈ Π | p ∈ hi and p 6∈ h j for ∀ j < i}.

Now we show that for any ordered filter ψ we can build an equivalent unambigu-
ous filter ψ′ = ((h′1, π

′

1), . . . , (h′n, π′n)), i.e., ψ(p) = ψ′(p) for any p ∈ Π.
The filter ψ′ is given by

π′i =πi

h′i =hi −
⋃
j<i

h j.

It can be easily seen that this filter is equivalent to ψ and unambiguous.
When classifying real world packets, more than just two resulting actions are

needed. The IDD scheme can be extended with a richer set of actions and the for-
malism of Multi-Terminal IDDs can be used for that. Formally, we may replace
the set of Boolean terminals with a set of actions and enrich all operations conse-
quently. For formal details, we again refer to the paper [Christiansen and Fleury,
2004] where MTIDDs are computed out of IDDs for individual actions from the
set.

The ideas have been implemented in Compact Filter [Compact Filter, 2005] for
Linux. The Compact Filter is based on the same kernel interface as Netfilter so the
user may compile it as a module. The IDD is precomputed by a user space control
program and the kernel is fed with the filtering code.

32

3 Routing, ARP, and Packet Filtering
in Software Routers

We could, of course, use any notation we want; do not laugh
at notations; invent them, they are powerful. In fact,
mathematics is, to a large extent, invention of better

notations.
– R. P. Feynman: Lectures on Physics I, 17-5

This chapter introduces a formalism we designed to denote routing, layer 3-to-
layer 2 address translation (ARP), and packet filtering. We will use the formalism
developed here to describe combining routing and ARP and proving the method
correct in the following chapter. In Chapter 5, we will add packet filter to the struc-
ture and show how the result can be employed in the hardware lookup engine.

We would like to excuse the fact that some parts of this chapter describe well
known principles of packet processing. It is intended to recall the principles short-
ly and to explain the notation that puts the principles onto formal basis.

In order to process a packet, a router must be able to handle three essential
questions:

1. whether to send the packet,

2. where to send the packet,

3. how to send the packet to the next hop.

The question “where” is answered by a routing table and it is a network layer
decision. We will discuss this topic in Section 3.1. “How” is handled by the link
layer—a link layer address of the next hop must be found, a translation mecha-
nism between layer 3 and layer 2 addresses is needed (Section 3.2). Last but not
least, “whether” is the work of a packet filter (Section 3.3). The world of packet
filters is very rich. As opposed to routing and ARP where the ideas behind them
have direct reflection in implementations, stating a useful formalism for packet
filters is a delicate question. We will show that classical textbook definitions are
not sufficient to build formal descriptions, and we argue that studying real-world
packet filters is necessary to state the formalism reasonably.

3 Routing, ARP, and Packet Filtering in Software Routers Routing

33

3.1 Routing

To decide where to send a packet, the router consults its routing table. We build
formal notation to describe routing tables in this section. The control process—
routing protocol—is beyond scope of this work; we concentrate on the process of
finding the next hop for the packet.

As the principles of routing are equal for both IPv4 and IPv6 protocols, we do
not distinguish between them unless necessary. Results of this chapter are applica-
ble for both of them. We must keep in mind that routing tables for the protocols
are distinct and they are processed separately. We also use terminology of IPv4 as
it is widely known.

3.1.1 Routing Table

Definition 3.1 IP, routing table
Let IP be the set of IP addresses. Routing table is a function of IP addresses returning
a record denoting where to send the packet

R: IP→ Interfaces × IP.

The Interfaces is a finite set of network interfaces of a particular router. The result of
routing is a pair consisting of the output interface and the IP address of the next
hop.

Network interfaces (usually connected to a single physical link or several of
them) are connected to a network. The network shares the most significant bits of
the address, the common part is called a network prefix and its length is a network
mask. Usual notation is, e.g., 147.251.54.0/24.

Basic principles of sending packets over a subnetted network have been stated
in [Mogul and Postel, 1985].7 To handle a packet, a router checks its destination
address and finds the longest matching prefix in its routing table.

An example of routing table is in Figure 3.1. Packets destined to the network
147.251.54.0/24 are sent through eth0 interface. The address of the next hop
will be directly the final destination of the packet. Any other packet goes to the
router that connects this network to the outside Internet, called a gateway. Its next
hop IP address will be the address of the gateway.

An interested reader can also learn about the motivations in [Mogul, 1984].7

3 Routing, ARP, and Packet Filtering in Software Routers Routing

34

Destination Gateway Genmask Flags Iface
147.251.54.0 0.0.0.0 255.255.255.0 U eth0
0.0.0.0 147.251.54.1 0.0.0.0 UG eth0

Figure 3.1 Example of a routing table

Rows of the routing table are essentially of two kinds, direct and indirect. We
will characterise them with several equivalent conditions.

Definition 3.2 Direct and indirect routes
Direct route is a route leading to the network the router is directly connected to (a
local network). A packet sent to this network is destined to a host connected to the
same subnet as the output interface of the router, sharing the same network prefix
with the interface. Its next hop address is equal to its final destination.

Indirect route is a route to the network that is accessed via an intermediate rout-
er, a gateway. The gateway is the next hop of the packet. Indirect route is a route
that is not direct.

3.1.2 Formal Notation

Although we have described routing tables as longest matching prefix structures,
we define it as first match lists. We will show later in this section that both repre-
sentations are equivalent. To describe routing tables, we use the following nota-
tion.8

Definition 3.3 Routing table syntax
A routing table R is a sorted list of Size(R) rules. Route Ri is the i-th rule for 1 ≤ i ≤
Size(R) and Len(Ri) is the length of the prefix in that rule.

Let [Ri] (which is a subset of IP) stand for the packets that match the i-th rule.
If the routing table is represented with a trie structure, [Ri] corresponds to the sub-
trie addressed by the prefix of Ri. Len(Ri) is then the length of the prefix9. The pre-
fix is said to have full length if it contains a complete IP address (i.e., Len(Ri) = 32
for IPv4 and Len(Ri) = 128 for IPv6).

Route Ri is called default if Len(Ri) = 0 (note that [Ri] = IP for the default route).
On the “output side,” NHIP(Ri) is the IP address of the next hop and NHInt(Ri) is
the output interface of the i-th rule.

The syntax is strongly inspired by the work by Frantzen [Frantzen, 2003].8

In a non-compressed trie it corresponds directly to the length of the path from the root to the node.9

3 Routing, ARP, and Packet Filtering in Software Routers Routing

35

The routing table does not have to cover the complete address space. If a des-
tination address is not found in the routing table, the router drops the packet and
informs the sender of the packet with “no route to host” error message. This situa-
tion never occurs when the default route is defined.

3.1.3 Properties of Routing Tables

To make further processing easier, we require that the routing table satisfies sever-
al conditions. We have two types of conditions. First of them serves to restrict the
model to real routing tables, the other to make further processing easier and/or
possible. The requirements go without loss of generality.

1. (First match) The rules are sorted in non-increasing prefix lengths, therefore
more special rules precede more general ones. Formally, for 1 ≤ i < j ≤ Size(R),
condition Len(Ri) ≥ Len(R j) holds.

2. (Uniqueness) Moreover, prefixes of the same lengths are disjoint, i.e., for all
i and j such that 1 ≤ i < j ≤ Size(R) and Len(Ri) = Len(R j) we have [Ri] ∩
[R j] = ∅. Hence at most one longest matching prefix exists for each destination
address.

The ordering allows us to define the semantics meaningfully.

Definition 3.4 Result of routing
To obtain the result of routing for a destination address p ∈ IP, we find R(p) = Ri

where i is the smallest index satisfying p ∈ [Ri]. Due to the ordering, it corre-
sponds to finding the longest matching prefix of the destination address p.

Note that the next hop address NHIP(R(p)) is the address of the gateway for
indirect routes. For direct routes, NHIP(R(p)) = p as the next hop is the final desti-
nation of the packet on local network.

In practice, a routing table is usually kept in a variant of trie data structure.
We gave a survey of such structures in Section 2.1.1. The longest matching prefix
has to be found in trie structure. We will use two representations in this thesis:
a longest-match trie and a first-match list that corresponds directly to our defini-
tions. It is necessary to show that both representations are equivalent.

A first-match list equivalent to a given trie structure can be obtained by means
of traversing the trie from longest prefixes. The routing table contains at most one
outcome for a particular prefix, therefore the first match and uniqueness proper-
ties are satisfied. For the opposite conversion, prefixes from the list are just insert-
ed into a trie. This is possible as prefixes of equal lengths are disjoint and the best
matching prefix in the trie for an address is the first matching rule from the list.

3 Routing, ARP, and Packet Filtering in Software Routers Routing

36

We will need an extra property to be satisfied by the routing table. It is not re-
lated to the routing table representation and it is not intended to model real world
routing tables.

3. (Relationship of direct and indirect networks) Direct networks do not contain
indirect networks as their subnets with the exception of full length entries. For-
mally, for each j such that 1 ≤ j ≤ Size(R) and R j is direct we require that if Ri

exists for an i such that 1 ≤ i < j and [Ri] ∩ [R j] 6= ∅ then Ri is also direct or Ri is
a full-length entry. (Note that [Ri] ⊂ [R j] in both cases.)

This property is purely technical. It will be necessary to allow us to re-arrange
the order of records when routing and ARP tables are combined together in Sec-
tion 4.2. We will be able to show its application there, mainly to prove Lemma 4.6.

Using this property would be easier if we omitted the possibility that the Ri

record may have full length. On the other side, full length records may be quite
common therefore the goal was to find as weak condition as possible.

As this requirement does not have to be satisfied by real-world routing tables,
we will demonstrate how routing tables can be converted to comply with it with-
out change of semantics. We will show the method of conversion in the following
Section 3.1.4.

3.1.4 Prefix Expansion

The easiest way may be to expand the problematic indirect prefix to a set of full
length records. This leads to an increase of routing records that is exponential to
the address length, more precisely to the address length minus the length of the
expanded prefix. It makes this method feasible only for very long indirect prefixes
and absolutely unacceptable for IPv6 where the lowest 64 bits are expected to be
an interface address.

A practically usable method is to expand the prefix of the direct network so
that the conflicting indirect entry is no longer in its subnet. Because of the prefix
expansion, it is easier to formulate and prove the method using trie representation
of the table. We write that string a is a prefix of b as a C b. Then, the property 3
from Section 3.1.3 can be re-written as follows. We require that if the routing table
contains a direct prefix a and a prefix b such that aCb then b is either direct or b has
full length.

We show now how to solve a single occurrence of violation of this property by
means of prefix expansion. Then we show how this relationship of prefixes can be
efficiently detected.

Let us have binary prefixes a = x1 . . . xk and b = x1 . . . xky1 . . . yl (where xi ∈ {0, 1}
and yi ∈ {0, 1}). The prefixes represent address spaces. Length of prefix a is k,
length of b is k + l. The task is to expand the prefix a into a set of prefixes that

3 Routing, ARP, and Packet Filtering in Software Routers Routing

37

Input: routing table R, prefixes a = x1 . . . xk and b = x1 . . . xky1 . . . yl (present
in R) such that l ≥ 1.
We construct prefixes

a1 = x1 . . . xk¬y1

a2 = x1 . . . xk y1¬y2

...

al = x1 . . . xk y1 y2 . . . yl−1¬yl

We construct a set I = {i | i ∈ {1, . . . , l} such that ai is not in R}. Routing table R′

is the copy of routing table R with prefix a removed and prefixes ai added
with the same outcome as a had for all i ∈ I.

Algorithm 3.1 Expanding a prefix in a routing table

covers the same address space and they are not prefixes of b. The expansion is
based on the fact that a can be expressed as a0 = x1 . . . xk0 and a1 = x1 . . . xk1 (this
relationship is usually called Shannon expansion). We take ai ∈ {a0, a1} such that ai

is not a prefix of b, put ai into the table instead of a in case that it has not been al-
ready present and continue expanding the other one. We never overwrite prefixes
in the table during the process. The formal description is given in Algorithm 3.1
and illustrated in Figure 3.2.

Figure 3.2 Algorithm 3.1 illustration

We have to show that the result of the Algorithm 3.1 discards the unwanted
relationship of the prefixes. The following lemma is easily seen from the form of
the prefixes generated.

Lemma 3.5
Prefixes ai constructed in Algorithm 3.1 are not prefixes of b.

Proof
Prefixes ai differ in the final negated bit from b. �

3 Routing, ARP, and Packet Filtering in Software Routers Routing

38

We have to show that the new routing table behaves equivalently with the old
one.

Theorem 3.6 Correctness of the expansion
The result of longest matching prefix lookup for an address p ∈ IP is the same for
routing table R and for table R′ generated by Algorithm 3.1.

Proof
Let p ∈ IP. It either is or is not routed by the prefix a in table R. Let us start with
the latter case.

If p is not routed by the prefix a in R, it either has not prefix x1 . . . xk at all and
nothing has changed for it in R′ or it has been routed by a prefix c such that a C c,
but c is left untouched in R′ as the algorithm never changes such prefixes.

The remaining case is that p is routed by the prefix a = x1 . . . xk in R. Then p
itself has prefix a and no other record with prefix a exists in R that would be a
prefix of p (otherwise it would be routed by the longer prefix).

We proceed by induction to l (i.e., the difference of lengths of a and b):

• Let l = 1. If p had a prefix x1 . . . xky1 then it would be routed by b. Hence it
must have prefix x1 . . . xk¬y1.

• Let the theorem hold for l − 1. Then p is routed either by some of a1, . . . , al−1

or by al = x1 . . . xky1 . . . yl−1¬yl. The remaining possibility is that it would be
routed by x1 . . . xky1 . . . yl = b which is not possible as we supposed p not to be
routed by b.

Therefore the result of routing is the same for both R and R′ as all the prefix-
es ai have the same outcome as prefix a. �

Violations of the property 3 on page 36 are easy to detect traversing the trie
containing the routing table in Depth-First Search10 (DFS). Returning back from
an indirect non-full-length node during the DFS, we just check that each node on
the path back to the root is not direct. If it is not the case, we have to expand the
prefix using the method above.

The DFS algorithm never returns to a node it has already visited in the trie
[Cormen et al., 2001]. We perform the expansion only returning from the node that
shall be expanded. The expansion changes only the subtrie of the node. Taking
those facts into account, we may continue the DFS after the node is expanded in
order to detect and expand other problematic prefixes. Hence the only Depth-First
Search through the whole trie is needed to find and eliminate all prefixes violating
the property 3.

For a detailed description of DFS properties see [Cormen et al., 2001].10

3 Routing, ARP, and Packet Filtering in Software Routers Link Layer Addressing

39

Theoretically, the prefix expansion described in this section may add at most
vw prefixes where v is the number of direct networks in the routing table and w is
the address width. On the contrary, tunnelling is the only practical situation that
may cause the unwanted relationship of prefixes. Supposing that number of tun-
nels configured is typically small and number of direct networks is also limited,
the increase in number of routing records is negligible. Therefore, for the purpose
of complexity estimates, we will ignore the prefix expansion step; Size(R) can be
understood roughly as routing table size when complexity is discussed.

We have shown that the properties stated in Section 3.1.3 have no effect on gen-
erality of the model. From now on we suppose that routing tables satisfy the properties
1–3 from Section 3.1.3 unless said otherwise.

3.2 Link Layer Addressing

Nodes of the network are connected with links. In order to reach the destination
host, a packet must be moved over each link on the path. Link layer uses its own
addressing, therefore an address translation mechanism is necessary. We prepare
a formal description of the translation mechanism in this section.

An address on the link layer is usually called physical address, LAN address, hard-
ware address, in the Ethernet context also MAC (Media Access Control) address. Their
common property is that the addresses have flat structure (as opposed to a hierar-
chical structure of IP addresses) and an address should be permanent to a particu-
lar device and unique11.

As most link layer protocols (like 802.11 wireless Ethernet, ATM, Frame Relay,
etc.) use similar way of addressing, we can use Ethernet as a well-known and
illustrative model and as a typical example. We will also use Ethernet terminology,
although the principles cover a wide class of level 3 to level 2 address translations.

3.2.1 Address Translation Mechanism

Translation principles of network and link layer addresses are described in [Plum-
mer, 1982]. The router maintains an ARP table containing IP and MAC address
pairs for machines on the local network. The records are kept for a specified
amount of time (typically several minutes), so the table is often called an ARP
cache.12 An example of ARP table is shown in Figure 3.3.

At least in theory. Physical addresses used to be written in ROMs. Today’s adapters keep their11

addresses in a flash-type memory, allowing experienced users to change them.

3 Routing, ARP, and Packet Filtering in Software Routers Link Layer Addressing

40

Address HWtype HWaddress Flags Mask Iface
147.251.54.1 ether 00:E0:81:27:DF:7B C eth0
147.251.54.10 ether 00:20:ED:5E:6D:98 C eth0

Figure 3.3 Example of an ARP table

3.2.2 Formal Notation

Definition 3.7 ARP table
Formally, ARP table is a function

A: IP→MAC

where MAC is a finite set of physical addresses.
In order to keep the notation consistent, ARP table A is a list of records. We

denote ARP records as Ai for 1 ≤ i ≤ Size(A). An ARP record Ai translates an IP
address from [Ai] to the MAC address. The ordering of rules is not relevant here
as the set [Ai] contains just a single IP address, not a portion of the address space
denoted by a prefix. We require the records to be unique, i.e., for 1 ≤ i < j ≤
Size(A) the condition [Ai] ∩ [A j] = ∅ holds. The result of the ARP lookup is the
MAC address NHMAC(Ai).

The result of ARP lookup for a destination address p ∈ IP is the record A(p) = Ai

such that p ∈ [Ai].

The ARP table does not have to cover the complete IP address space. If the
corresponding MAC address is not found for the next hop, ARP protocol is used
to learn it. If it does not succeed, the packet is dropped and an error message is re-
turned. For constructing tables for hardware lookups, only “current snapshot” of
the table is necessary, as explained in Section 4.2. The mechanism of learning ARP
records is purely matter of the operating system of the router, we therefore do not
include the ARP protocol itself in the model.

The structure is called neighbour cache in IPv6 and this term is sometimes used in IPv4 context, too.12

Anyway, the author preferred the older term in order to call routing-ARP-filtering structures RAF
and not RNF which looks quite ugly.

3 Routing, ARP, and Packet Filtering in Software Routers Packet Filtering

41

3.3 Packet Filtering

The aim of this section is to state a useful formal definition of packet filters. We
will discuss origins and motivation for the formalism. If a reader is interested in
the formal syntax only, it is found in Section 3.3.5.

As the terminology in the literature differs, we start with basic definitions. A
firewall is a combination of hardware and software that isolates an internal net-
work from the outside Internet [Kurose and Ross, 2001], allowing some packets to
pass and blocking others. More briefly, firewall is often defined as a box filtering
network traffic [Cheswick et al., 2003]. Although various classifications appear in
the literature, we usually distinguish two basic types of firewalls, application gate-
ways and packet filters.

An application gateway is an application-specific filter that bases its filtering de-
cision on scanning content of each packet. Application gateways usually need
more extensive and complex processing of the packet body therefore are not very
suitable for processing in our type of hardware. Application gateways depend
on thorough knowledge of the application, often even on keeping state of the ap-
plication level connection. Applications change rapidly compared to underlying
network layers, development of such hardware supported application gateway
would be inefficient in terms of the price of the development itself related to the
performance gain obtained. An example of an application gateway may be scan-
ning incoming mail for viruses and/or web proxy (especially with some “added
value,” say, enriched with blocking pictures of specified type).

Usual definition in the literature [Cheswick et al., 2003] says that packet filters
work by discarding packets based on their headers. No context is kept, so the
decision is based solely on the content of the current packet.

While formal model of routing and ARP tables has been based on principles,
no single directly usable description of packet filters exists in the literature. The
definition above is very illustrative but not completely adequate. It says that pack-
et filters discard packets. Although it explains the principle to a student, it is not
really true—packet filters often support much wider repertoire of actions. The def-
inition says that the fate of packets is based on contents of their headers. Again,
this is not very exact, most packet filters allow to use, e.g., the input interface as
part of the filtering decision and the input interface is not part of headers.

When we cannot start with the “textbook definition,” we shall study the liter-
ature. Papers on packet filtering can be divided into two categories. They either
discuss implementations or some general principles of packet classification. Pa-
pers interested in principles typically just define packet filters to suit their purpos-
es but they do not discuss whether the definition matches real implementations.
We will do this work in the following. We will study and compare a representa-
tive set of real-world firewalls in order to

3 Routing, ARP, and Packet Filtering in Software Routers Packet Filtering

42

• state a useful formal description of packet filters to prevent the model to be
unnecessarily weak,

• to show that the model matches the reality,

• and show that the filters can be converted into the hardware classification en-
gine.

Following observations are based on a representative list of filters used in vari-
ous operating systems and routers.

The filters turn out to have significant similarities that help us to treat them
as “classes” during the survey. Anyway, the classification is based on subjectively
chosen similarities and it is somewhat fuzzy—another classification is surely pos-
sible.

We may distinguish three basic “styles of filtering:”

• open source BSD systems:

− pf packet filter [PF, 2005a]13 (originally for OpenBSD [OpenBSD, 2005] but
also ported for FreeBSD [FreeBSD, 2005] and NetBSD [NetBSD, 2005]),

− Darren Reed’s IP Filter [IPF, 2005a] (available on FreeBSD, NetBSD, Solaris,
etc.14),

− FreeBSD-sponsored IPFIREWALL (IPFW) [IPFIREWALL, 2005], [Lidl et al.,
2002],

• Linux:

− ipchains [Russel, 2005a],

− iptables/netfilter [netfilter, 2005a],

− Compact Filter [Compact Filter, 2005] (its theoretical foundations are dis-
cussed in Section 2.2.5.2),

• commercial routers:

Although pf stands for “packet filter” the pf is capable of NAT, port forwarding, and stateful rules,13

so it is a firewall in our terminology.
OpenBSD used to incorporate a derivative of the IP Filter, but it was removed due to licensing prob-14

lems. Other projects also seem to tend to pf. See http://www.openbsd.org/lyrics.html for
details.

3 Routing, ARP, and Packet Filtering in Software Routers Packet Filtering

43

− boxes by Juniper Networks, Inc. [Juniper Networks, Inc., 2005a],

− boxes by CISCO Systems [Cisco Systems, 2005].

Moving towards a formal definition of packet filter, we divide the discussion
into three basic parts: “inputs” of filtering process, the “way” how filtering is per-
formed and “outputs,” i.e., the set of possible results of packet filtering. During
the survey, we will try to identify what differences are a matter of principle and
what is just a syntactical construct with the same expression abilities.

Contemporary firewalls support many features not directly satisfying our defi-
nition of packet filter or firewall, such as network address translation (NAT), vari-
ous packet rewriting and editing, including even very obscure features like chang-
ing the Time-to-Live value, etc. Those features are not supported by the hardware
accelerator. They can be done by sending the packet to the operating system to be
processed.

Each filtering tool has its peculiarities, fortunately often belonging just to the
“syntax sugar” category. Anyway, it makes the comparison study quite difficult.
We will not take such features into account if they are not parts of the basic func-
tionality of such tool. Even the documentation is not always absolutely clean
about the firewall setup15, forcing the administrator to use the method of trial and
error.

3.3.1 Inputs of Filtering

The first difference to the classical definition is that headers of packets may not be
enough to decide what to do with them in the filter. Other information is often
used, e.g., input interface the packet arrived, output interface the packet should
be sent out, or other “implicit” observable properties (“observables” in terms of
quantum physics) of the packet.

Packet information We will use term packet information for a set of fields found
in packet headers (like source/destination addresses/ports, level 2 addresses, pro-
tocol type, etc.) and other observables of the packet (input interface, output inter-
face). In formulae, symbol PktInfo stands for the Cartesian product of all packet
observables.

The packet information corresponds to a data structure used internally by the
operating system to describe a packet. What fields are accessible for a filtering tool

E.g., [Juniper Networks, Inc., 2005a], page 161: “discard—The packet is not accepted and is not15

processed further. Discarded packets cannot be logged or sampled.”, page 162: “The firewall stops
logging discard and reject actions at a high traffic rate.”

3 Routing, ARP, and Packet Filtering in Software Routers Packet Filtering

44

depends mainly on implementation of the structures in a particular operating sys-
tem. From the hardware accelerator’s point of view, packet information is stored
in the Unified Header structure, see Section 1.2.2 for its description.

3.3.2 Evaluation Order of Firewall Rules

We will study evaluation order of firewall rules. The two main groups are first-
match and last-match filters. Anyway, special features that change evaluation or-
der can be found in filters. We will show how they can be avoided without change
of semantics.

3.3.2.1 First-match and Last-match Filters

Reed’s IP Filter and pf packet filter are typical examples of “last-match” filters.
For each packet processed by the packet filter, the filter rules are evaluated in se-
quential order, from first to last. The last matching rule is remembered and used
as the result. Moreover, keyword quick denotes that the rule is considered the
last matching rule, and evaluation of subsequent rules is skipped.

The remaining filters we consider are essentially first-match, the first matching
rule is taken for a packet. As a syntactical shorthand, blocks of rule sets can be
named and used as a subroutine (called a chain in ipchains and iptables). Similar
functionality can be achieved using skipto commands in IPFW. We can obtain
purely first-match representation by expanding the named blocks (they have to
be finite so the expansion has finite depth, otherwise the evaluation of the filter
would be infinite, probably causing a kernel crash).

A first-match filter can be easily converted to last-match one either by revert-
ing the order of rules or using the quick keyword for all the rules. A purely last-
match filter that does not contain quick rules can be transformed to first-match
again reverting the order of rules.

3.3.2.2 Last-match Filters with quick

More sophisticated conversion is necessary when the last-match filter contains
quick keyword in some of its rules. Having rules16 F = {F1, . . . ,Fn}, we denote
by 〈Fi〉 the packet information (syntactically) matched by the rule Fi (not taking into
account the remainder of the rule set, just the ith rule itself). Let 〈Fi〉F be the packet
information that semantically matches the rule Fi with respect to the rule set F, i.e., it
is just the packet information actually matched by Fi when processing the packet
against the filter.

The formal syntax will be defined precisely in Section 3.3.5. We only sketch the essentials to explain16

the conversion here.

3 Routing, ARP, and Packet Filtering in Software Routers Packet Filtering

45

In the last-match filter containing quick rules, the rule Fi semantically matches
just packets that

• match the rule Fi,

• do not match any following rule F j for i < j ≤ n, and

• do not match any preceding quick rule Fk for 1 ≤ k < i.

Formally,

〈Fi〉F = 〈Fi〉 −

⋃

i< j≤n

〈F j〉 ∪
⋃

1≤k<i
Fk is quick

〈Fk〉

 .
The resulting rules can be represented in first-match semantics. To see that, we
will show a stronger result—the rules are pairwise disjoint.

Lemma 3.8
Sets 〈Fi〉F are pairwise disjoint for 1 ≤ i ≤ n.

Proof
Let p ∈ 〈Fi〉F ∩ 〈F j〉F for i 6= j. Suppose without loss of generality that i < j. Then,
from the definition, p ∈ 〈Fi〉 and p 6∈ 〈Fl〉 for any i < l. Specially, p 6∈ 〈F j〉, hence
p 6∈ 〈F j〉F which is a contradiction. �

We can see from the construction that the behaviour of the resulting filter is
equivalent to the original one. For each rule, we have just removed parts of PktInfo
space that would never match when evaluating the rule in the whole ruleset any-
way.

The scheme can be optimised by removing rules that are not satisfiable and by
removing unreachable rules. Produced rules can be also simplified, mainly remov-
ing redundant tests and/or testing subsets of already tested fields.

Moreover, if the original filter was total17, i.e.,
⋃

1≤i≤n〈Fi〉 = PktInfo, the result-
ing rules will be a partitioning of PktInfo. We have already shown that sets 〈Fi〉F

Totality of filters is a reasonable requirement: we want the filter to decide what to do with any packet17

coming through.

3 Routing, ARP, and Packet Filtering in Software Routers Packet Filtering

46

constructed are pairwise disjoint, so the remaining step is to demonstrate that⋃
1≤i≤n〈Fi〉F = PktInfo.

Lemma 3.9
Let
⋃

1≤i≤n〈Fi〉 = PktInfo. Then
⋃

1≤i≤n〈Fi〉F = PktInfo.

Proof
Let us evaluate the expression

⋃
1≤i≤n〈Fi〉F.

⋃
1≤i≤n

〈Fi〉F =
⋃

1≤i≤n

〈Fi〉 −

⋃

i< j≤n

〈F j〉 ∪
⋃

1≤k<i
Fk is quick

〈Fk〉

 =

=
⋃

1≤i≤n

〈Fi〉 −
⋂

1≤i≤n

⋃

i< j≤n

〈F j〉 ∪
⋃

1≤k<i
Fk is quick

〈Fk〉

 =

= PktInfo −
⋂

1≤i≤n

⋃

i< j≤n

〈F j〉 ∪
⋃

1≤k<i
Fk is quick

〈Fk〉

 =(1)

= PktInfo − ∅ = PktInfo(2)

Equation (1) was obtained supposing the original filter is total. Equation (2) is
based on the observation that just the ith rule is missing in ith disjunct in equa-
tion (1), so disjunctions of pairs of the expressions are empty. �

3.3.2.3 “Double Match” Features

Packet filters in routers by Juniper Networks find the first matching rule to handle
a packet. Moreover, if the resulting action is marked with the next term action
modifier, evaluation of the filter does not stop but continues against subsequent
rules of the filter. Again, this does not affect expression abilities of the filter; we
can expand the next term rule into a sequence of conjunctions of the rule with
all the following rules (followed by the rest of the filter). Similar method can
be used for first-match filters that allow performing “double match,” e.g., IPFW
count rule action which updates counter of packets matching the rule and the
search continues in the rule set.

The principle of expansion is indicated in Figure 3.4 for a filter containing four
rules, extending to more rules or multiple next term occurrences is straightfor-
ward. The second rule is marked next term (not taking into account the result-
ing actions). The rule is expanded into a series of rules matched by packets that
would match the next term rule and a subsequent rule. The right part of the

3 Routing, ARP, and Packet Filtering in Software Routers Packet Filtering

47

Original filter Expanded filter
rule1 rule1
rule2 next term rule2 and rule3

rule2 and rule4
rule2

rule3 rule3
rule4 rule4

Figure 3.4 Expanding next term statement
in first-match filters

scheme shows the expanded filter. We omit resulting actions in the scheme, they
depend on the actual filtering tool. In general, it is necessary to study all combi-
nations of actions originating from the rules. Note the second rule repeated below
the expansion in the expanded filter—it is necessary for packets that match just
the second rule and none of the subsequent ones.

3.3.3 Position of Filtering in IP Stack

Packet filtering may occur before routing, after routing, or both. Dividing filtering
into several stages that take place in various stages of packet processing serves
mainly to make administration more comfortable (and more confusing). Some fil-
tering tools provide distinct filtering chains for packets passing through, getting
into, and sent out of the router. Although the principles of filtering are very sim-
ilar for all tools, an administrator has to be extremely careful about the precise
meaning of the configuration.

3.3.3.1 Overview of Filtering Schemes

Packet filtering in open-source BSD platforms usually takes place in the input and
output stages. Inbound filters affect all packets that enter the system, either des-
tined there or to be forwarded. All the traffic leaving the system, generated by the
system and/or forwarded, has to pass through outbound filters. A specification
of an interface is an optional part of the filtering rule. This approach is used in
OpenBSD pf packet filter, Darren Reed’s IP Filter, and other (mainly BSD) systems.
Having an input and an output filter in the system is considered to be the “stan-
dard BSD approach.” Even though filtering is applied in two places of the IP stack,
the filters usually do not require specifying the direction. In that case, the filter
applies to both incoming and outgoing packets.

An administrator may even use several filtering tools at the same time on a
single BSD box if he/she is curious enough to guess what effects it is going to
cause.

3 Routing, ARP, and Packet Filtering in Software Routers Packet Filtering

48

FreeBSD-sponsored filtering application IPFIREWALL (IPFW) supports a bit
richer set of filtering points. It allows to filter input and output traffic, in both
cases in level 2 and level 3 of kernel IP stack separately. The points of filtering
are controlled by kernel (sysctl) variables. The main difference between level 2
and 3 filters is that the level 2 headers are not available for the level 3 filter. Each
packet is checked against the complete ruleset in all points the filter is established.
If a rule matching patterns that are not accessible in the place of invocation is test-
ed, it does not match. The documentation recommends to configure the rulesets
separately for various points of filtering used in the configuration. As the filter
configuration is global, this may be achieved by means of skipping to the appro-
priate part of the ruleset.

The purpose of splitting level 2 and level 3 filtering is a kind of optimisation: if
the user needs only level 3 filtering it is not necessary to parse the packet includ-
ing level 2 headers, to perform filtering, and to parse the headers again in order to
push it to the higher level of the IP stack. Anyway, any level 3 filter can be used
also on level 2.

Linux uses basically two filtering tools, ipchains and iptables/netfilter. The
ipchains package is now considered obsolete and will be probably supported at
most till Linux kernel version 2.8. Principles of packet processing in both the tools
are very similar, user-visible changes are mostly syntactical, therefore we may re-
strict ourselves to iptables processing. In Section 2.2.5.2 we also mentioned Com-
pact Filter. This tool uses the same kernel interface, it only compiles the filter into
a more efficient form.

Iptables start with three lists of rules called INPUT, OUTPUT, and FORWARD
by default. The IP stack first decides if the packet is destined for the host machine.
In that case, the INPUT chain is applied and if it accepts the packet it is delivered
to a process running on the host machine. If the packet is to be sent to another
network node, it goes only through the FORWARD chain. Finally, packets generat-
ed by local processes traverse through the OUTPUT chain. The only difference of
expression abilities is that INPUT filters can test the input interface of a packet (a
rule specifying an output interface is syntactically correct but it will never match
in the INPUT chain). Symmetrically, the OUTPUT chain can only test the output
interface. In the FORWARD chain, both input and output interfaces may match.
(It also means that FORWARD filtering necessarily takes place after routing when
the output interface is known.)

Routers by Juniper Networks, Inc., distinguish data packets (packets to be for-
warded by the router) and local packets (destined to the box or sent by it). Data
packets can be filtered on devices equipped with the Internet Processor II only, lo-
cal packets may be controlled on all routing platforms.

For each interface, a firewall can be applied to incoming traffic, outgoing traf-
fic, or both. A named filter, consisting essentially of an input and an output fil-
ter, is bound to an interface. All traffic incoming through an interface is checked
against the incoming filter for the interface (including local packets), local packets

3 Routing, ARP, and Packet Filtering in Software Routers Packet Filtering

49

are moreover checked against the local input filter (formally bound to the loop-
back incoming interface). Processing of outgoing packets is symmetrical.

Filtering in commercially available routers by CISCO Systems is very similar
to Juniper platform, in essence, first match filters can be configured separately for
each input and output interface.

3.3.3.2 Expression Power Comparison

Based on the survey in the previous section, we will study what differences may
affect the expression power of the filters.

Let us suppose for the rest of this section that all the filters we deal with have
first-match semantics—we have shown in Section 3.3.2 that this does not affect
generality.

The first difference is whether filters are defined “one rule-set per interface” or
for all interfaces in a single list (allowing to test the interface but not requiring
it). Both types can be easily converted. Let us suppose first-match semantics of
the language and filtering rules that contain just conjunctions of terms. Having
a separate filter for each interface, we obtain a global filter by adding “and inter-
face i” explicitly to each rule and joining the rule lists into one. In the opposite
direction, we may merely put the global filter to all interfaces. Moreover, rules
containing “interface i” can be omitted from all lists except the list for the inter-
face i.

We stated that having an input and an output filter is a common practice in
BSD configuration. Not all BSD filtering tools have the rulesets strictly separated.
For example, direction specification is mandatory in ipf for each rule (so the filter
behaves as separated rulesets applied in two places of the IP stack). On the oppo-
site, if direction specification is omitted in a pf rule, the rule applies to both input
and output traffic (a single ruleset applied in two places). Using the same method
as for per-interface filters, rules with optional and mandatory direction specifica-
tion may be converted.

We have shown that defining rule-sets per interface or globally as well as re-
quiring mandatory direction specification is just a “political decision” and matter
of taste.

Another difference we observed in the previous section is in the “style of pro-
cessing,” either having a BSD style input and output filters and/or Linux style
INPUT/FORWARD/OUTPUT chains.

To convert the BSD input and output filters into INPUT/FORWARD/OUT-
PUT, we copy the input filter into INPUT and output filter into OUTPUT. It en-
sures that locally destined and generated packets go through input and output
filters.

The FORWARD chain is a bit more complex to build, we have to arrange it
to test both input and output filters. From theoretical point of view, we can com-
pute a Cartesian product of the input and output filters according to the scheme

3 Routing, ARP, and Packet Filtering in Software Routers Packet Filtering

50

input1 and output1 → action1.1
input1 and output2 → action1.2
.
input1 and outputn→ action1.n
.
inputm and output1 → actionm.1
.
inputm and outputn→ actionm.n

Figure 3.5 Ordering rules in FOR-
WARD filters

in Figure 3.5. The rows contain conjunctions of input and output rules. Consider-
ing only actions Accept and Deny, the final action is Accept if and only if both of
its parts have Accept. For richer set of actions, all combinations must be evaluat-
ed, e.g., combination Accept, Log from the input rule and Deny from the output
one should result into Deny, Log in the combination. Moreover, input rules result-
ing in Deny action do not have to be expanded using output rules as all of them
would result into Deny anyway.

If both level 2 and level 3 input (resp. output) filters are specified in IPFW, the
same method can be used to combine them into a single level 2 input (output)
filter.

A “practical” approach to building the FORWARD chain can produce a more
concise representation. We can insert the input filter into the FORWARD chain
and to rewrite all accepting actions in the chain to calling a new FORWARD’ chain
that contains the output filter. It simulates performing the input filter and then the
output one. The FORWARD’ chain is stored just once, as opposed to the full table
above.

To convert the Linux INPUT/FORWARD/OUTPUT scheme into BSD input
and output filters, a way to describe addresses of the host machine is needed. This
can be directly supported by the tool, for example, IPFW has a keyword me that
matches any IP address configured on an interface in the system. It is expanded
when evaluating the packet against the rule. If a similar feature is not support-
ed, it may not be sufficient to build the list of host’s addresses by hand. Unicast
addresses do not change very frequently, on the other hand, multicast group mem-
bership may be quite dynamic, changing sets of interface addresses rapidly. We
will use the symbol me to describe the addresses of the host (abstracting from how
it is obtained).

The simplest conversion requires that the output filter is able to test both the
input interface the packet arrived and the output interface prescribed by routing.
Having the possibility to test both the interfaces in the output filter, we can create
the input filter containing the rules from INPUT enriched with “and destined to
me” to ensure that the INPUT rules match just packets destined to the host in the

3 Routing, ARP, and Packet Filtering in Software Routers Packet Filtering

51

input filter. The output filter will contain the OUTPUT filter rules enriched with
“and sent by me” followed by the FORWARD rules with “and not sent by me.” Lo-
cally generated packets will therefore be tested by the OUTPUT filter, other routed
packets by the FORWARD filter.

If it is not possible to test both interfaces in the output filter, we need to have
another mechanism to simulate that. Tagging is a feature that allows adding a tag
to the packet and to test it in later stages of processing. We can use it to remember
the incoming interface in the input filter (just adding it after the rules for self-des-
tined packets; it is possible as we have to tag only packets that are not destined to
the host). We then rewrite all incoming interface tests in the OUTPUT filter just to
testing appropriate tags.

Other methods of propagating the input interface value to the output filter
may be supported by the tool. If it is not possible to test the incoming interface
in the output filter, the input/output scheme would not be capable of processing
the FORWARD rules containing the incoming interface test.

To sum up, we have shown that all considered filtering schemes have equal ex-
pression power and they can be converted one into another. The only exception is
the iptables FORWARD chain. For that conversion, the input/output scheme has
to support a way to test both input and output interfaces in a single rule and/or
to simulate such test by other means and it has to support a way to describe own
addresses of the router.

However, the hardware accelerator is capable of testing both interfaces in its
processing: the input interface value is available in the Unified Header and the
output interface is computed during the LUP search. In the following section, we
will discuss position of the hardware accelerator in the system.

3.3.3.3 Position of the Hardware Accelerator in the System

In Chapter 1, we described that the accelerator behaves as a network interface
card from the operating system’s point of view (only “switching some packets by
itself”). Taking that into account, we shall discuss the position of the accelerator in
the system and state what kind of filters shall the accelerator incorporate. We will
divide the traffic according to its destination to packets sent to and by the operat-
ing system and packets forwarded directly by the accelerator.

The accelerator can handle packets sent by the host computer operating sys-
tem. The packet is inserted directly to the output queue of the appropriate inter-
face, so no other processing is expected by the accelerator, it behaves just as an
ordinary network interface card in this case. It determines also processing of the
output filter—output filtering must be performed completely by the operating sys-
tem, at least because no possibility of packet classification and filtering exists in
the output queue.

3 Routing, ARP, and Packet Filtering in Software Routers Packet Filtering

52

Packets received by the accelerator may be either forwarded to another inter-
face of the accelerator and/or passed to the host computer. Let us start with the
latter case.

Packets passed to the host computer can be either destined there or they shall
be forwarded through an interface that does not belong to the accelerator (e.g., a
network interface card). Both the possibilities lead to identical actions for the accel-
erator, mere sending the packet to the operating system. In that case, the accelera-
tor does not have to perform any filtering for such packets as they will be filtered
by the operating system anyway. On the other hand, filtering them in the accel-
erator decreases the load of the system bus, especially when the ratio of dropped
packets to the total traffic is high. It can be helpful in case of attacks to the host ma-
chine when the attacking data stream is stopped in hardware, preventing increase
of system load and wasting bus bandwidth.

For packets forwarded by the accelerator, all the filters that would be applied
in the operating system must be performed by the classification engine. It direct-
ly corresponds to Linux style FORWARD filter described in the beginning of Sec-
tion 3.3.3.

3.3.4 Resulting Actions

The definition of packet filter speaks only about “discarding packets.” Real-world
packet filters support richer sets of actions, like accepting (which lets the packet
go through), rejecting (drops the packet and informs the sender with an ICMP
message), discard (drop silently), logging (write more or less detailed information
about the packet to a log file), etc.

Although it is not always explicitly described in documentation of various fil-
tering tools, results of filtering rules can be divided into two categories, basic ac-
tions and action modifiers. Basic actions determine whether the packet is accepted
or discarded. Just one action is a mandatory part of each rule (or it has an implic-
it default value in some filters). Action modifiers add extra processing that may or
may not change the packet. A rule can contain zero or more action modifiers.

For example, Junos operating system [Juniper Networks, Inc., 2005a] has ba-
sic actions18 accept—accept the packet, discard—drop the packet silently, and
reject—the packed is dropped and a rejection message is returned.

Following action modifiers can be used in Junos: count—add packet to the
total count, log—the packet’s header information is stored, policer—apply rate
limiting, sample—sample the packet traffic, and finally syslog—log an alert for
the packet.

We omit actions and modifiers that are related just to evaluating of the filter and/or Junos specific18

processing, like setting forwarding classes and priorities.

3 Routing, ARP, and Packet Filtering in Software Routers Packet Filtering

53

Let BasicActions be the set of basic filtering actions of a particular filtering tool.
In the simplest case, BasicActions = {Accept,Deny}. Let ActionModifiers be the set of
action modifiers. Then, we define filtering actions as

Actions = BasicActions × 2ActionModifiers.

Although such syntax is useful to explain the concept of actions and modifiers,
it would be technically unnecessarily complex to use—we would have to define
functions to disassemble components of the product. To keep things simple, for
a ∈ Actions, we will freely use syntax a = {Accept,Log} (and Accept ∈ a and Log ∈ a)
for both actions and modifiers as misunderstanding is not possible. Of course, we
should keep the concept of actions and modifiers in minds.

Processing of filtering rules in the accelerator is based on the observation that
we can either process the packet in the accelerator or we have to send the packet
to the operating system to be processed. When the packet is passed to the operat-
ing system IP stack, it is “always processed completely and correctly.” We have no
possibility of, say, performing accepting and logging so that we send the packet in
hardware and pass it to the operating system in the standard way to write a mes-
sage to the system log as no way exists to instruct the IP stack to log the packet
but not to send it away without modifying the kernel IP stack code.

We divide the filtering actions into two groups: actions performed by the ac-
celerator and actions requiring sending the packet to the operating system. We
define a partitioning on Actions containing classes

• ActionsHW of actions that can be performed by the accelerator,

• ActionsOS of actions that have to be performed by the operating system.

No “absolute border” exists between the classes, they depend on the state of
hardware accelerator implementation. E.g., if a mechanism for logging packets
would be implemented in the accelerator (i.e., an interface for notifying the log-
ging daemon through the driver), action “deny and log” can move to the hard-
ware supported class.

3.3.5 Packet Filter Definition

Based on the survey and discussion of previous sections, packet filters have one
feature in common: they partition the space of possible packet observables and
attach actions to the partitions. Formally, packet filter is a pair (Π,A) where

3 Routing, ARP, and Packet Filtering in Software Routers Packet Filtering

54

• Π = {PktInfo1, . . . ,PktInfon} such that PktInfoi ⊆ PktInfo for 1 ≤ i ≤ n,

• Π is a partitioning of PktInfo,

• A = {a1, . . . , an} such that ai ∈ Actions for all 1 ≤ i ≤ n,

• action ai is assigned (and executed for) the set PktInfoi.

Note that the definition does not specify how membership in a PktInfoi set is
determined, it can be done by any computable function, e.g., matching a pattern
on some fields of the packet header, performing a computation, or even an exhaus-
tive list of matching packets.

Using this partitioning-based description directly is not very practical, it re-
quires describing each subset explicitly. Therefore, we represent packet filters as
first match lists. Such representation is equivalent to the partition-based descrip-
tion. A filter expressed as a partitioning can be directly interpreted as a first match
list. A first match list can be converted to an explicitly expressed partitioning
[Frantzen, 2003]. The basic idea of the conversion is that a packet accepted by
the list must match an accepting rule and none of preceding rejecting ones.19

Definition 3.10 Packet filter
Let us define packet filter as a total mapping

F: PktInfo→ Actions

where PktInfo is the packet information (see Section 3.3.1) and Actions is a set of
possible filtering actions (see Section 3.3.4).

A packet filter F consists of Size(F) rules. A filtering rule Fi is the i-th rule in F
for 1 ≤ i ≤ Size(F). Let 〈Fi〉 ⊆ PktInfo be the set of packet information that matches
rule Fi. We use [Fi] ⊆ IP to denote the set of destination IP addresses that the
rule matches. This notation is intended to keep the syntax compatible with our
notation of routing and ARP tables.

The result of filtering for a packet information p ∈ PktInfo is the record Fi for
the smallest index i such that p ∈ 〈Fi〉. The resulting action is Action(Fi) ∈ Actions.

A packet filter must decide what to do with each packet, therefore we require
packet filter to be total, i.e., to give a result for all packet headers. In practice, this
is usually achieved using a default action20 (often expressed as “default chain pol-
icy” and/or hardwired default behaviour of the filter). Rule Fi is called default

We used similar conversion in Section 3.3.2.2 for evaluating last-match filters.19

Note that requiring the default action is a stronger condition than totality of the filter.20

3 Routing, ARP, and Packet Filtering in Software Routers Packet Filtering

55

<fw-list> := <fw-rule> ";" ...
<fw-rule> := [<sif>] [<saddr>] [<sport>]

[<dif>] [<daddr>] [<dport>]
[<proto>] <action>

<action> := "accept" | "deny" | "accept log" | "deny log"
<sif> := "sif" <interface-id>
<dif> := "dif" <interface-id>
<saddr> := "saddr" <ip-address> "/" <network-mask>
<daddr> := "daddr" <ip-address> "/" <network-mask>
<sport> := "sport" <port-number> "-" <port-number>
<dport> := "dport" <port-number> "-" <port-number>
<proto> := "proto" <protocol-specification>

Figure 3.6 Grammar of packet filters

daddr 147.251.54.0/255.255.255.0 dport 80-80 accept;
daddr 147.251.54.10/255.255.255.255 accept;
deny;

Figure 3.7 Packet filter—an example

if 〈Fi〉 = PktInfo. We suppose that the last rule in the filter is the default rule, i.e.,
〈FSize(F)〉 = PktInfo.

Without loss of generality, we suppose that filtering rules contain only conjunc-
tions of atomic tests unless said otherwise. Rules containing disjunctions can be
rewritten into sequences of conjunction rules in the first match filter.

To denote a packet filter, we will use grammar shown in Figure 3.6. An exam-
ple of packet filter is depicted in Figure 3.7.

We have to describe how packet filtering interacts with routing and link-lay-
er addressing in our model. The cooperation of routing and ARPs has been dis-
cussed at the end of Section 3.2. We incorporate packet filtering just after ARP
resolution. The packet is routed, MAC address of the next hop is resolved, and
packet filtering is performed. If the result of the filtering process is an accepting
action then the packet is sent out.

56

4 Routing and ARP Table Combined

Parental advisory: explicit mathematical expressions.
– Miloš Liška

We have described routing, ARP, and packet filtering, and how they cooperate in
the operating system. In order to perform equivalent lookups in the hardware
lookup machine, combining them to a single lookup operation is needed. The
method to combine lookups consists of two main parts: combining routing and
ARP into a single structure and then adding the packet filter. The latter part of the
method—adding packet filter—will be described in Chapter 5.

This chapter deals with combining routing and ARPs. The method is based on
injecting ARP records to the routing table, creating a structure we call a routing-
ARP table. Formally, we handle all the tables as first-match lists. We prove the
method correct in the first match representation and we show how the first match
routing-ARP table can be converted into longest matching prefix representation
that discards possible redundancies.

Through the whole work, we suppose that the resulting structure will be inter-
preted in an environment where we can give up processing a packet and leave it
to a “higher intelligence that always performs the correct action.” Practically, the
accelerator can send a packet to the operating system to be processed if handling
the packet is not possible in the accelerator for any reason. We discuss this topic
in the following Section 4.1. In the rest of this chapter (Section 4.2), we define the
routing-ARP table (Section 4.2.2), describe and prove correctness of the method to
combine routing and ARP into a single operation, resulting in the final algorithm
presented in Section 4.2.5. In Section 4.2.6, we give a complexity estimate of the
final structure.

4.1 Software Cooperation

An essential principle is used in the design: If the hardware lookup cannot resolve a
packet itself it can send it to the software in the same way as an ordinary network adapter
would.

In the algorithms, this will be denoted by a ‘SW’ action that means the packet
is sent to software router to be processed. The operating system acts as an “or-
acle” that always performs the “correct action,” just in the sense of hardware/
software co-design ideas.

Of course, packets passing through software are processed more slowly than
packets switched by the hardware engine. It does not have to indicate a serious

4 Routing and ARP Table Combined Routing and ARP

57

problem if the portion of the software processed traffic related to the total traffic
is small enough. On one extreme, we can achieve correct behaviour of the router
sending all traffic to software processing. Surely, this is not what we intend. The
goal is to accelerate as much traffic as possible.

Maximum performance would be possible only if all traffic was switched by
hardware. Nevertheless, following kinds of reasons can prevent us to reach this
goal.

• We can have “design reasons” (dictated by the economy of the development)
not to process some types of packets in hardware. E.g., IPv6 Routing Option
requests swapping two IPv6 addresses in the output editor. This operation is
not suitable to perform in FPGAs as 128-bit string swapping would consume
too large area of the chip or inadequate time, depending on the design. On the
opposite, packets with Routing Option are very rare in the traffic.

This category also contains handling erroneous packets. The easiest way to
create an appropriate response (an ICMP message) is to send the packets to the
operating system.

• We can use the SW action as a part of the design. For example, we use it to
initiate the ARP protocol in the operating system in case that the ARP record
for a destination is not known. This technique will be used later in this chapter.

• Resigning from hardware processing can be helpful in case of “runtime prob-
lems” as the last resort. In the process of lookup structure compilation, run-
ning out of available memory may occur or length of lookup branch may ex-
ceed an allocation block. We will discuss this possibility in Section 5.8—we
will see that the method of combining routing, ARP, and filters is adaptable to
various memory sizes.

4.2 Routing and ARP

While a software router usually searches for the longest matching routing entry
in order to obtain a next hop and then it resolves its MAC address, the hardware
engine has to solve both steps at once.

We will consider managing forwarded traffic only, ignoring packets destined to
the host computer itself. Delivering packets to the host computer is based on the
same principles, it differs in its inputs only—input packet filter has to be applied.
We will discuss host-destined traffic in Section 5.7.

Combining routing and ARP tables (and even maintaining them together) is
not a new idea. Open-source BSD clones (FreeBSD, NetBSD) use a single table
to store both routing and ARP information. Nowadays, FreeBSD designers tend

4 Routing and ARP Table Combined Routing and ARP

58

to split the tables, saying that handling the tables separately is easier and avoids
unnecessary redundancies [Rizzo, 2004a].

The routing-ARP table resulting from this process is intended to be recomput-
ed whenever either routing table or ARP table changes in order to keep the hard-
ware lookup structure up-to-date.

In Section 4.2.1, we discuss how to obtain ARP records in the operating sys-
tem. Moreover, we show that immediate recomputing of the routing-ARP table
is not necessary in case of ARP record removal. In Section 4.2.2, we define the
routing-ARP table formally. Section 4.2.3 describes the method to compute the
routing-ARP table and demonstrates its correctness and properties of the method.
In Section 4.2.5, we give the algorithm computing longest matching prefix repre-
sentation of the routing-ARP table directly. Complexity of the resulting structure
is given in Section 4.2.6.

4.2.1 Obtaining ARP Records

The routing table changes only when reconfigured by hand or by a routing proto-
col. This is not the case of ARP table. ARP table is quite dynamic, it holds records
that have been used at most some time ago. This section discusses how to keep
behaviour of the routing-ARP table equivalent to the routing table and ARP table
while not changing the behaviour of the operating system itself. In the previous
section, we stated that the routing-ARP table must be recomputed whenever ei-
ther routing table or ARP table changes. We also demonstrate that this require-
ment is too strict and it can be softened. We show that in case of ARP record
removal, recomputing the whole structure immediately is not necessary.

Records in the ARP cache are kept for a specified amount of time, typically
from five minutes to several hours. In order to minimise the recomputations of
the lookup structure, the initial idea was to test the whole network and to build
the ARP cache as complete as possible21. Although this would be feasible in small
networks, it is not scalable very well and it is unclean how to handle validity of
records in such table. Moreover, it would require introducing a mechanism to
learn ARP records into the operating system. It is not very suitable as one of the
most important design principles is to keep the behaviour of the software router
unchanged22 whenever possible, so this approach was definitely rejected.

Instead of pro-active building the ARP cache, we use current content of the
table, marking currently unresolved entries to be processed by software. The look-
up structure must be updated when an ARP cache entry is added or modified. If a
MAC address of the next hop of an incoming packet may be resolved, the packet

Theoretically, this can be achieved trying to ping all machines in the local network.21

Both in sense of not changing the kernel and not changing the standard behaviour of the operating22

system.

4 Routing and ARP Table Combined Routing and ARP

59

is forwarded by hardware. Otherwise the packet is sent to the operating system.
Software emits the ARP query to learn the MAC address of the next hop and en-
riches the ARP cache with the response. As the content of the cache changed, the
lookup structure must be recomputed. Finally, when the lookup structure prop-
agates into hardware, incoming packets forwarded to the previously added next
hop will be handled by hardware.

A delicate problem arises with removing entries from the ARP cache. To keep
the principle of equivalence of hardware and software behaviours, we should re-
compute the lookup structure when an entry from the ARP cache is deleted. Nev-
ertheless, we have a reason against it, it is desirable to keep the update frequency
of the hardware lookup structure as small as possible.

Let us study “observable” effects of entry removal in order to show that we
may be reluctant removing the entries. The first reason to purge ARP entries is
keeping the cache reasonably small, as pointed out by Malkin [Malkin, 1995] (the
original RFC [Plummer, 1982] only addresses the problem stating this issue needs
more thought). When a network node becomes inactive, no reason exists to keep
an ARP record for it.

A MAC address belonging to an IP address may change (this is usually called
“ARP moved”, for an implementation, see, e.g., FreeBSD [FreeBSD, 2005] kernel
code23). This may happen for example on a DHCP WiFi network. If the connec-
tion is initiated by the newcomer, the ARP cache of the receiving station will be
corrected by the new record, so changing the entry causes lookup structure recom-
putation. While this behaviour seems very logical and conforming the principles
of ARP, the author was not able to find any authoritative source describing or
even standardising it. Custom and implementations seem to be the only source.
However, some implementations do not behave this way. IP stack in the Sun So-
laris operating system ignores ARP cache changes that should be caused by ARP
move and waits until the entry expires24. Even though we have not verified this
behaviour, we conclude that details of changing ARP records related to an IP ad-
dress may be strongly implementation dependent. Anyway, it has no effect on re-
computing the table: adding or changing a record must trigger routing-ARP table
recomputation.

To sum up, we may omit updating the lookup structure in case of ARP cache
entry deletion in case that updates stimulated by other causes are reasonably fre-
quent (we can use a timer restarted by each update). Although we slightly violate
the “hardware and software equivalence principle,” lazy removing of the entries
just lengthens the timeout. It may be suitable to use a timer that causes recomputa-
tion of the lookup structures in order of seconds from the last recomputation even
if no direct reason for recomputation occurred. It ensures that the prolongation

netinet/if_ether.c23

http://supportforum.sun.com/network/index.php?t=msg&th=247&start=0&rid=024

4 Routing and ARP Table Combined Routing and ARP

60

of the ARP table is kept “an order of magnitude” smaller than the normal ARP
record timeout value.

4.2.2 RA Table Definition

Having current contents of routing and ARP tables as the input, the task is to com-
pute the table that combines routing and ARP into the only lookup operation. We
call the resulting structure a routing-ARP table:

RA: IP→ (Interfaces ×MAC) ∪ {SW}

The RA table returns either the interface and MAC address of the next hop where
the packet should be sent or it indicates that the packet must be processed by soft-
ware.

Definition 4.1 RA table
Routing-ARP table RA is an ordered list of rules. We will use RAi for routing-ARP
rules (for 1 ≤ i ≤ Size(RA)) and [RAi] for IP addresses affected by the rule. Analog-
ically with routing syntax, NHInt(RAi) and NHMAC(RAi) are the interface to reach
the next hop and the hardware address of the next hop, respectively.

Let Len(RAi) be the length of the prefix in the rule; RA records with length zero
are called default RA rules and records with the length of the IP address (32 for
IPv4 and 128 for IPv6) are called full-length RA records.

To obtain a result for a destination address p ∈ IP, denoted RA(p), we find RAi

for the smallest i such that p ∈ [RAi].

4.2.3 Computing First-Match RA Tables

Creating the RA table out of routing and ARP tables in first-match representa-
tions is quite straightforward. Traversing the routing table, ARP entries are “in-
jected” inside, depending on whether the route is direct or indirect. In case of
locally connected network, all resolved ARP entries are added. Finally, the traffic
destined to the rest of the network with currently unknown ARP records is deliv-
ered to the operating system. For indirect routes, the MAC address of the next
hop is inserted into the table directly instead of its IP address if the MAC address
is known. Otherwise, the route must be processed by software.

Algorithm 4.1 is a pseudocode for combining routing table represented as a
list (which is equivalent to traversing a trie in non-increasing prefix length order)
and ARP table (formally also first match, but it can be represented in an arbitrary

4 Routing and ARP Table Combined Routing and ARP

61

1 RA = ∅
2 l = 1
3 for i = 1 to Size(R) do
4 if Ri is direct
5 then
6 /* go through all ARP records in this local subnet: */
7 for each j such that 1 ≤ j ≤ Size(A) and [A j] ⊆ [Ri] do
8 [RAl] = [A j]
9 RAl = (NHInt(Ri),NHMAC(A j))
10 l = l + 1
11 done
12 /* the rest must get resolved in software */
13 [RAl] = [Ri]
14 RAl = SW
15 l = l + 1
16 else /* Ri is indirect */
17 if exists k such that NHIP(Ri) = [Ak]
18 then
19 [RAl] = [Ri]
20 RAl = (NHInt(Ri),NHMAC(Ak))
21 l = l + 1
22 else
23 [RAl] = [Ri]
24 RAl = SW
25 l = l + 1
26 fi
27 fi
28 done
29 if l = 1 ∨ [RAl−1] 6= IP /* ∨ requires lazy evaluation */
30 [RAl] = IP /* ensure that RA contains a default route */
31 RAl = SW
32 fi

Algorithm 4.1 Combining routing and ARP into RA table

manner, say a list—ARP records are not ordered) into the RA table represented as
a list.

We have to show that the RA table computed by this algorithm behaves the
same way as routing and ARP tables. It means that the RA lookup result is the
same as ordinary software processing where lookups in routing table and resolv-
ing ARP are performed separately. Sending the packet to software is also a correct
result—in that case the packet is processed by the original routing and ARP tables.

4 Routing and ARP Table Combined Routing and ARP

62

First, we show that Algorithm 4.1 performs “useful work,” i.e., that it does
not result into sending all packets to the operating system. For each direct route,
routing-ARP records are created for all destinations if the appropriate ARP record
is known. If the ARP record of a gateway is known it is used to create a routing-
ARP record for the indirect route.

Lemma 4.2
RA table produced by Algorithm 4.1 is total (i.e., it is defined for each destination
address p ∈ IP).

Proof
To ensure that the RA table is total, it is sufficient that it contains the default RA
record.

If the routing table contains the default route then the default route must be
the last record in the table and the default RA record is inserted into the RA table.
At the end, the algorithm tests presence of the default route in the table. If the
default route was not present the algorithm adds final the RA record destined in
software. �

We have shown that the result of RA lookup is defined. In the following theo-
rem, we prove that the result is correct.

Theorem 4.3 Correctness of RA compilation
For each destination address p ∈ IP, routing-ARP table contains a result that is
either SW or it is the same as applying routing and then ARP on the destination
address, i.e.,

NHInt(RA(p)) = NHInt(R(p))

NHMAC(RA(p)) = NHMAC(A(NHIP(R(p)))).

Proof
Let us have a destination address p ∈ IP. As the RA table is total, the smallest
index l exists such that p ∈ [RAl].

If RAl = SW then the destination address is handled by the original routing
table and ARP cache in software, thus correctly.

Let us suppose the result is an interface NHInt(RAl) together with a MAC ad-
dress NHMAC(RAl). In that case, the RA rule RAl has been created either in lines 8–
10 or lines 19–21 of the algorithm. We will study both cases.

Let us suppose that the rule RAl was created in lines 8–10. Such an entry has
a single prefix of full length in [RAl] (it originates from the ARP table that con-
tains full addresses). We will show that the RAl rule was created from a route Ri

where i is the smallest index such that p ∈ [Ri]. Suppose the opposite. Then

4 Routing and ARP Table Combined Routing and ARP

63

an index j such that 1 ≤ j < i must exist such that p ∈ [R j]. Length of prefix
of Ri cannot be equal to Len(R j) as prefixes of equal lengths are disjoint. There-
fore Len(R j) > Len(Ri) due to the ordering of R. As each routing record pro-
duces at least one routing-ARP record with the same address space (the final soft-
ware entry for direct routes and/or the indirect route), the algorithm must have
produced an entry RAk such that 1 ≤ k < l and p ∈ [RAk]. This is not pos-
sible as we chose the RAl as the first matching entry for destination address p.
Hence NHInt(RA(p)) = NHInt(R(p)).

As NHIP(R(p)) = p for direct routes, a unique ARP entry A j exists such that
NHMAC(RAl) = NHMAC(A j).

The remaining case is that the rule RAl was created in lines 19–21. We will
show that the rule originates from the first Ri for that p ∈ [Ri]. Suppose the oppo-
site, precisely, that a routing record such that p ∈ [R j] exists for 1 ≤ j < i. Then
again, Len(R j) > Len(Ri), moreover each routing record produces at least one RA
entry, therefore an RA record RAk must exist such that 1 ≤ k < l and p ∈ [RAk].
That is not possible due to the choice of RAl as the first matching record.

To sum up, NHInt(RAl) = NHInt(Ri) and NHMAC(RAl) = NHMAC(A(NHIP(Ri))).
�

We have obtained a routing-ARP table that is behaviourally equivalent to the
original routing and ARP tables. The RA table is first match but it can contain
redundancies. It is advantageous to have a trie form of the table (i.e., an equiva-
lent longest matching prefix representation) in order to obtain a concise represen-
tation. We will use trie representation to combine the structure with packet filters
in Chapter 5.

If we are able to sort RA entries in non-increasing way and ensure that prefixes
of equal lengths are disjoint we would obtain a table that can be converted into
a trie form. To reach this goal, let us study the ordering and relations of rules
produced by the algorithm and potential redundancies in the table that have to be
discarded.

Lemma 4.4 RA compilation sort order
Algorithm 4.1 sorts the resulting RA table in non-increasing prefix lengths with
exception of prefixes of full lengths, i.e., for 1 ≤ k < l ≤ Size(RA) the following
condition holds: Len(RAk) ≥ Len(RAl) or RAl has full length.

Moreover, prefixes with equal lengths with exception of full-length prefixes are
disjoint.

Proof
The RA records are copied in the same order as the original routes with the excep-
tion of resolved local ARPs that can produce full addresses.

Each routing record produces just one RA prefix of the same length and op-
tionally a number of full-length prefixes. Note that the final default RA record

4 Routing and ARP Table Combined Routing and ARP

64

Figure 4.1 Scheme of prefix length
structure created by Algorithm 4.1

destined in software is added only if no default record was present in the table
(see Lemma 4.2). �

The structure of lengths of entries is shown in Figure 4.1. As we see from the
preceding lemma, the only issue that remains to be solved is the structure of full-
length prefixes. The full-length prefix for a particular destination address may
be repeated across the table several times. In that case the first occurrence is of
interest as all the following ones are unreachable and may be omitted.

Lemma 4.5 Deleting redundant RA entries
Let us have 1 ≤ k < l ≤ Size(RA) such that [RAk] = [RAl]. Let RA′ be the table RA
with row l omitted (RA′i = RAi for 1 ≤ i < l and RA′i = RAi+1 for l ≤ i < Size(RA)).
Then RA(p) = RA′(p) for each destination address p ∈ IP.

Proof
Obviously, the row RAl is unreachable in the original table. �

Full-length prefixes are mixed into prefixes of other lengths. In order to pre-
pare the table to be converted in longest prefix semantics it would be more suit-
able to move the prefixes to the beginning of the table. We have to make sure
that this operation does not change the meaning of the table. To ensure this, it is
enough that the address space affected by the prefix is disjoint with all the preced-
ing rules (i.e., rules of an arbitrary length). Blocks of disjoint records can be freely
re-ordered.

Thanks to the preceding lemma, we have to be interested in the first occurrence
of the full-length prefix for an address only.

The meaning of the following result is that the first occurrence of a full length
entry in the RA table is disjoint with all its predecessors. It can also be understood
from an operational point of view that the first occurrence of a full length entry
for an address is reachable in the routing-ARP table.

Lemma 4.6 Sorting full-length RA records
Let RAl be the first occurrence of full-length RA record for a given destination
address, precisely, let RAl be a full-length RA record satisfying that for each full-

4 Routing and ARP Table Combined Routing and ARP

65

length record RAm such that [RAl] = [RAm] we have l ≤ m. Then for each k such
that 1 ≤ k < l condition [RAk] ∩ [RAl] = ∅ holds.

Proof
Let p ∈ [RAl] satisfying the prerequisites of the Lemma. We want to show that
no index k exists such that 1 ≤ k < l and p ∈ [RAk]. Let us suppose the opposite,
i.e., that a routing-ARP entry RAk exists such that p ∈ [RAk] and 1 ≤ k < l (saying
nothing about its length). We will study all possibilities how such an entry could
have been created.

Let R j be the routing record from which RAl was created and Ri the record that
produced RAk. First, we note that p ∈ [R j] and p ∈ [Ri]. If it was not so, the RA
entries would not contain p (the algorithm copies the address space and/or takes
a full-length entry out of the address space of a direct route). Moreover, i ≤ j,
otherwise the order of the produced routing-ARP entries would not be preserved.
(Note that equality is possible, a routing rule can produce several routing-ARP
entries.)

The route R j can be either indirect or direct. We will study both cases.

• Let R j be indirect25 first. Then R j must have full length, otherwise it would not
produce a full length entry RAl. As i ≤ j the route Ri must have full length due
to the ordering of the routing table. If i < j then [Ri] and [R j] would be disjoint.
This is not possible as both contain p. Hence i = j. As indirect route produces
just one routing-ARP entry, we cannot have k < l. Therefore R j cannot be indi-
rect.

• Let R j be direct. In that case the route Ri must be direct or full-length due to
the requirement 3 on page 36.

− Let Ri be direct. As R j is direct, the record RAl must have been created
either in lines 8–10 or lines 13–15 of the Algorithm 4.1.

? If RAl was created in lines 8–10 then an ARP record for p must exist. It
would be used also to expand the route Ri, hence RAl would not be the
first full-length record for p.

? If RAl was created in lines 13–15 then R j would have full length. As we
have i ≤ j then route Ri would have full length, too.

We show that i = j. If i < j then [Ri] and [R j] would have to be
disjoint. This is not possible as both contain p. Hence i = j.

This is a theoretical option as it makes no sense to have subnets of full lengths normally. Anyway,25

e.g., Linux route command allows to configure them, therefore we have to allow such pathological
cases in the model.

4 Routing and ARP Table Combined Routing and ARP

66

It is possible that the route Ri created two (full-length) entries for p.
In that case RAl would not be the first full-length routing-ARP entry
containing p.

− The remaining case is that Ri has full length. Then Ri must have created a
full-length record RAk such that p ∈ [RAk]. Then RAl is not the first full-
length record handling p, which is not possible.

The record RAk could not be created in any of the cases. �

To prove the preceding lemma, we supposed that all subnets of local networks
are direct or have full length (see requirement 3 on page 3). If it was not so, an
unreachable full length entry might be produced by the algorithm. Consider a
fragment of a routing table as an example:

1.2.3.0/24 -> indirect route
1.2.0.0/16 -> direct route

Let us suppose that an ARP record exists for the 1.2.3.4 destination address
and the indirect route has just been added. The ARP record will have been occu-
pying the ARP cache for several minutes. The algorithm would produce

1.2.3.0/24 -> some gateway and/or SW
1.2.3.4/32 -> resolved ARP in the local network
1.2.0.0/16 -> some gateway and/or SW

The second record is unreachable and cannot be moved to the beginning of the
table.

4.2.4 RA Table Properties Summary

To sum previous results up, we have observed following properties of the routing-
ARP table produced by the Algorithm 4.1:

1. Only the first occurrence of an address space is of interest, precisely if the algo-
rithm creates an entry RAl and an entry RAk such that [RAk] = [RAl] and k < l
has been created before, we do not have to store RAl into the RA table accord-
ing to Lemma 4.5.

2. Full-length entries may be pushed to the beginning of the table thanks to Lem-
ma 4.6. This way we obtain a table sorted in non-increasing prefix lengths.

4 Routing and ARP Table Combined Routing and ARP

67

This algorithm is the same as Algorithm 4.1 with the following modifications.

• The resulting RA table is kept in a trie structure. (Hence it is sorted on-
the-fly in non-increasing way and all records are unique.)

• Let us understand assignments that create rules RAl in the following way:

− Assignment to [RAl] is creating a path in the trie denoting the prefix of
the RAl rule.

− Assigning the output to the rule (e.g., RAl = (NHInt(Ri),NHMAC(A j)))
means assign the output only if it was empty previously.

Algorithm 4.2 Combining routing and ARP into RA table expressed as trie

4.2.5 Longest Prefix Representation of RA Table

Instead of post-processing the table, we may change the order of the rules imme-
diately during the run of the algorithm with a small change of semantics of assign-
ments. The final version of the computation is shown in Algorithm 4.2.

With those changes, the algorithm constructs a trie representation of the RA
table which is equivalent to the original output list. Only the first rule for a given
address prefix is recorded and full-length entries may be harmlessly “moved to
the beginning” as we have shown above. Again, first match representation may
be obtained from the trie traversing it in post-order manner. Also note that rules
sharing common prefix length are disjoint.

The RA table computed out of examples shown in Figure 3.1 and Figure 3.3 is
depicted in Figure 4.2.

147.251.54.1/32 -> eth0, 00:E0:81:27:DF:7B
147.251.54.10/32 -> eth0, 00:20:ED:5E:6D:98
147.251.54.0/24 -> SW
0.0.0.0/0 -> eth0, 00:E0:81:27:DF:7B

Figure 4.2 RA table computed out of R in Fig. 3.1 and A in Fig. 3.3

4.2.6 Complexity of the RA Table

Space needed to store the RA table is limited from above by O(Size(R) + Size(A)).
The RA table contains a copy of the routing table. Moreover, some networks

4 Routing and ARP Table Combined Routing and ARP

68

can be expanded into several records originating from the ARP table. Each ARP
record can be inserted at most once as we can see in the Algorithm 4.2.

Time to search the RA table in software is completely the same as for routing
tables kept in trie structures, i.e., O(w) where w is bit length of an address. At this
point, we shall note that this part of the structure is kept in CAM and searched in
constant time. We will discuss this topic in detail in Section 5.6 where packet filter
representation is also considered.

69

5 Routing, ARP, and Filtering
Combined

No, my good lord, but, as you did command,
I did repel his letters and denied

His access to me.
– William Shakespeare, Hamlet, Act 2, Scene 1

In Chapter 4, we have combined routing and link layer addressing. In order to
obtain a single lookup structure covering routing, ARP, and packet filter, we have
to add packet filter setting and convert the structure to the target architecture—a
first match CAM and comparison instructions.

First, we define a structure called routing-ARP-filtering (RAF) table. Its type
describes how packet processing actions can be combined. Theoretically, the RAF
table can be computed as a Cartesian product of the RA table and the packet filter.
The result is behaviourally correct, alas, it cannot be rewritten into the target ar-
chitecture reasonably. We demonstrate that such approach is completely unable to
utilise advantages of content addressable memories. More sophisticated method
is therefore necessary.

The main problem of the naive approach is that it is not able to rearrange RAF
records produced into first match structure. We need a way to re-sort the records
into the required form without changing their semantics. We introduce represen-
tation of a packet filter as a Filtering Decision Diagram (FDD) which is basically
a special type of a binary decision diagram with semantical relationship among
nodes. FDD nodes test terms of filtering language. It differs from traditional bi-
nary decision diagram methods where a single bit is the unit of processing. More-
over, we introduce encoding filtering rule priorities (i.e., order of the filter) direct-
ly to the FDD, without the need to compute partitioning of packet space explicitly.

To obtain a single lookup structure, the routing-ARP table can be combined
with FDD representation of packet filters. We moreover distribute relevant filters
to relevant portions of the destination address space. It avoids testing filters that
would not match anyway for a given destination address. Finally, an algorithm to
convert the “upper part” of the RAF representation into first match structure that
can be interpreted by CAM is shown.

This chapter is organised as follows. In Section 5.1, we define the RAF table.
Section 5.2 presents the naive method of RAF table computation. Section 5.3 de-
fines filtering decision diagrams, Section 5.4 describes how FDD representation of
filters can be combined with RA tables. In Section 5.5, we demonstrate how the re-
sulting structure can be employed in the target architecture. We give a complexity

5 Routing, ARP, and Filtering Combined RAF Table

70

estimate in Section 5.6, Section 5.7 describes how traffic destined to the host com-
puter is handled. Finally, Section 5.8 points out properties of the method allowing
to use it reasonably on limited hardware resources.

In the major part of this chapter, we discuss forwarded traffic processing only un-
less said otherwise.

5.1 RAF Table

Routing-ARP-filtering (RAF) table is a structure combining routing-ARP table into
a single structure with packet filters. Its type originates from possible results of
the classification. The result is one of the following:

• The RA result is the next hop interface and MAC address, the filtering rule is
accepting, and the filtering action can be performed by the accelerator. Then
the RAF result is the interface and MAC address together with all action modi-
fiers accompanying the filtering rule.

• The filtering action avoids sending the packet to the next hop (e.g., dropping
the packet) and the action can be performed by the accelerator. Then, just the
filtering action shall be performed.

• Otherwise, the packet must be sent to the operating system, so the remaining
possibility is the SW action.

Let us express the possibilities formally together with syntactical constructs to
handle RAF tables.

Definition 5.1 RAF table
Routing-ARP-filtering (RAF) table is a total function

RAF: PktInfo→ (Interfaces ×MAC × 2ActionModifiers) ∪ Actions ∪ {SW}

where PktInfo is a packet information (described in Section 3.3). Interfaces is a set
of output interfaces, MAC is a set of MAC addresses. ActionModifiers is a set of
action modifiers we have described in Section 3.3.4. In this case, the packet is for-
warded and some additional processing (that can be performed by the accelerator)
is required. In case the packet is not forwarded, Actions is a set of possible filter-
ing actions (we recall that Actions = BasicActions × 2ActionModifiers). Finally, SW is
a special action requiring the packet to be processed by the operating system IP
stack.

5 Routing, ARP, and Filtering Combined Naive Approach

71

Similarly with RA table and packet filter syntax, we use RAFi for 1 ≤ i ≤
Size(RAF) to denote RAF records. On the “input side,” 〈RAFi〉 ∈ PktInfo is the
packet information that rule RAFi matches and [RAFi] ∈ IP is the matching set of
destination addresses. A rule such that 〈RAFi〉 = PktInfo is called a default RAF
rule.

The result of applying RAF table on packet information p ∈ PktInfo is the
first matching RAF record, formally RAF(p) = RAFi for the smallest index i such
that p ∈ 〈RAFi〉 for 1 ≤ i ≤ Size(RAF).

If the output of the RAFi rule is an output interface with a MAC address, we
use NHInt(RAFi) and NHMAC(RAFi) to obtain them. By Action(RAFi) we denote
the set of actions related to the rule. Let us recall that although the Actions set
is internally structured, we use the “∈” relation for all of its components (see Sec-
tion 3.3.4 for details).

We require the RAF table to be total, an action must be taken for each packet.
The table can be easily made total adding a default rule, say destined in software.

5.2 Naive Approach

The first idea how to combine routing, ARP, and packet filtering into a single op-
eration is partly inspired by expansion/compression approach [Crescenzi et al.,
1999a]. We tried to construct the table as a Cartesian product of the RA table and
the packet filter and to optimise it later. We briefly describe the method. Finally,
we show that the method does not produce a structure that can be re-written ef-
ficiently into a lookup structure suitable for machines combining associative and
conventional memories.

5.2.1 The Method

We build a Cartesian product of the RA table and the packet filter as shown in the
scheme in Algorithm 5.1. The function create raf entry(RAi,F j) produces an RAF
entry of format “[RAi] and 〈F j〉”, i.e., the routing prefix and the filtering rule in
conjunction.

We suppose that we have a list of actions that can be performed by the acceler-
ator, see Section 3.3.4 for details. The outcome of the RAF rule depends on actions
prescribed by RAi and F j:

• if following conditions hold:

5 Routing, ARP, and Filtering Combined Naive Approach

72

l = 1
for i = 1 to Size(RA) do

for j = 1 to Size(F) do
RAFl = create raf entry(RAi,F j)
l = l + 1

done
done

Algorithm 5.1 Combining RA and packet filter naively

− the result of RAi is not SW,

− the action in the F j entry is accepting, and

− the action in the F j can be performed by hardware

then the resulting interface is NHInt(RAi), MAC address NHMAC(RAi), and ac-
tion modifiers from the F j if present,

• if the F j action is not accepting but can be performed by hardware, the action
in the RAF rule is the action (including action modifiers) from F j,

• the action is SW otherwise (in this case, the action cannot be performed by
hardware or the packet is destined to the host machine).

Note that even if the RA entry results in SW and the filter drops the packet
with an action that can be performed by hardware, the packet will be dropped by
the accelerator and it will not be transferred through the system bus.

Various optimisations can decrease the number of records produced by the al-
gorithm. We can omit entries that are not satisfiable because of disjoint require-
ments on destination addresses originating from the route and from the filter. We
can remove unreachable entries, records resulting into identical actions can be
merged in some cases. Alas, no optimisations can prevent the situation described
in the following Section 5.2.2.

5.2.2 Table Degeneration

The resulting RAF structure must be re-written into a structure that can be inter-
preted by the lookup processor.

First, let us sum up basic properties of the lookup engine design relevant to the
relationship of the RAF structure and the resulting LUP nanoprogram. (Compare

5 Routing, ARP, and Filtering Combined Naive Approach

73

dport 5 sport 1 A1 0.0.0.0/0 dport 5 sport 1 A1
dport 5 A2 0.0.0.0/0 dport 5 A2
dport 6 sport 2 A3 0.0.0.0/0 dport 6 sport 2 A3

sport 2 A4 0.0.0.0/0 sport 2 A4
A5 0.0.0.0/0 A5

Figure 5.1 A packet filter (left) and the resulting RAF table (right)

with the overview of the target architecture and its abstract properties in Chap-
ter 1.)

• Width of the CAM is not sufficient to perform match of the full width, there-
fore some parts of PktInfo cannot be matched in CAM and must be handled by
comparison instructions.

• Parts (“columns”) of PktInfo that are matched in CAM are chosen arbitrarily
but globally. (We can choose what fields shall be matched in CAM but we have
to do it for the whole structure.)

• When a packet matches a CAM line, comparison instructions belonging to the
line have to resolve the search completely. No possibility exists to match the
pattern against remaining CAM lines again. In other words, backtracking has
to be avoided.

The method to compute the RAF table described above produces a first match
rule list that could be used if it fitted into CAM width. The question is whether
we can give a general method to find rules what columns shall be moved to the
instructions and how to rewrite the table into such form.

Let us consider the following example. We have an RA table containing just
the default route (i.e., a route for 0.0.0.0/0) pointing to a gateway. A filter is
shown in the left part of Figure 5.1. The filter leads to various actions A1, . . . ,
A5, so the rules cannot be re-sorted in any way. Note that all the filtering rules
are reachable. In short, the filter does not contain any pathology that could be
suspected to cause unwanted effects in the resulting RAF table.

The RAF table computed according to the scheme in Algorithm 5.1 is shown in
the right part of the figure. The question is how to rewrite it into CAM and SRAM
instructions. Based on the properties of lookup engine design, let us suppose that
we can match either source and/or destination port in CAM but not both at the
same time. Hence, we have to aggregate entries that become identical in CAM
and prepare the instructions that resolve them fully.

5 Routing, ARP, and Filtering Combined Naive Approach

74

First, let us suppose that destination port is matched by CAM and source port
by comparison instructions in SRAM. Then we obviously have to aggregate the
identical lines:

[A1,A2] 0.0.0.0/0 dport 5 -> resolve between A1, A2 in SRAM
[A3] 0.0.0.0/0 dport 6 -> if sport 2 then A3
[A4,A5] 0.0.0.0/0 dport * -> if sport 2 then A4 else A5

We use brackets to denote origins of the lines. The content of CAM follows.
The text following the “->” sign describes the structure of the SRAM instructions.
Symbol “*” stands for don’t cares.

As we can see, packet with destination port 6 and source port 1 would be
caught by line [A3]. It should match the [A4,A5] instead. It is caused by the
fact that the SRAM resolution of the [A3] line is not total (in the sense that it does
not have to decide the search fully). To correct that, we could compact lines A3–A5
and to test the destination port again by instructions, completely wasting CAM
space. The resulting structure would be:

[A1,A2] 0.0.0.0/0 dport 5 -> resolve between A1, A2 in SRAM
[A3-A5] 0.0.0.0/0 dport * -> resolve A3, A4, and A5 in SRAM

Another possibility is to preserve the [A3] line and to push resolving the rest
of the filter there.

To show that this problem is not caused by wrong choice of fields that shall be
matched in CAM, we will now match source port there. Because of the don’t-care
entry on the second RAF entry, we obtain

[A1] 0.0.0.0/0 sport 1 -> if dport 5 then A1
[A2-A5] 0.0.0.0/0 sport * -> resolve A2-A5

Even this representation requires backtracking; packets with source port 1 and
destination port other than 5 would be misled to the [A1] instruction set. The
way to represent this structure correctly is not to resolve the complete ruleset by
the instructions, using the only CAM row. This is caused by entries unspecified
in the filter crossed thorough its columns. We call this situation “crossed don’t-
cares.” Crossed don’t-cares can even cause that all entries have to be moved from
CAM. Moreover, crossed fields do not have to be localised in consecutive entries.
Packet filters tend to specify only several fields in a single rule, so we can expect
that the density of crossed don’t-cares is high.

We could also change the order of rules (hoping it would produce better re-
sults) by swapping how the cycles in Algorithm 5.1 are nested. Note that it would
not change anything in our example.

5 Routing, ARP, and Filtering Combined Representing Filtering Rules as Decision Diagrams

75

5.3 Representing Filtering Rules as Decision Diagrams

The method of combining RA table with filtering rules we have described in Sec-
tion 5.2 seemed simple and obvious, but it turned out to be completely unusable
in the target hardware architecture.

The problem of crossed don’t-cares initiated a search for a method that allows
re-sorting the records in more or less arbitrary manner. In an ideal case, such re-
sorting requirements should be satisfied “behind the scenes,” guaranteeing equiv-
alent representations without explicit interaction.

The structure suggested by Vojtěch Řehák to study for this task was a binary
decision diagram. We developed a special type of this structure—filtering deci-
sion diagram (FDD)—that reflects natural properties of packet filters (like typical
types of tests and rule priorities) on one hand and requirements of target archi-
tecture on the other one, i.e., possibility to rewrite such structure into a hardware
machine employing content addressable memory and comparison instructions.

In the following Section 5.3.1, we define the filtering decision diagram. Vari-
ables of the filtering decision diagram (FDD) are directly terms of the filtering lan-
guage. Sections 5.3.2 and 5.3.3 describe basic procedures to manipulate FDDs. The
procedure reflects semantical relations among FDD variables. Conversion of a simple
rule is presented in Section 5.3.4. We introduce encoding rule priorities directly in the
FDD. Section 5.3.5 describes converting the whole rule set to an FDD. Section 5.3.6
summarises notes on practical implementation.

5.3.1 Filtering Decision Diagrams

After recalling classical definitions of binary decision diagrams and their special
types, we define filtering decision diagrams in this section.

Definition 5.2 (Multi-terminal) binary decision diagram
Binary Decision Diagram (BDD) [Bryant, 1986] is a rooted directed graph (V,E) with
two types of vertices. Each terminal vertex is labelled 0 or 1. A nonterminal ver-
tex v is labelled with a Boolean variable var(v) and it has two successors, low(v)
corresponding the case when the variable is assigned 0, and high(v) for 1.

Multi-Terminal BDD (MTBDD) [Bahar et al., 1993]26 is defined the same way as
BDD, only the terminal vertices are labelled with elements of a finite set.

The structure is called Algebraic Decision Diagram (ADD) in that paper.26

5 Routing, ARP, and Filtering Combined Representing Filtering Rules as Decision Diagrams

76

For an assignment of variables, the value of the function represented by the
BDD is obtained by traversing a path from the root to a terminal node, choosing
branches indicated by the values of the variables.

Definition 5.3 MTBDD—special types
A (MT)BDD is ordered if on all paths from the root to a terminal node the variables
respect a given linear order.

A (MT)BDD is called reduced if it satisfies following conditions:

• (uniqueness) no two distinct nodes u and v have the same variable and low-
and high-successor, i.e., var(u) = var(v), low(u) = low(v), high(u) = high(v)
implies u = v, and

• (non-redundancy) no variable node u has identical low- and high-successor,
i.e., low(u) 6= high(u).

We will define a structure called Filtering Decision Diagram (FDD) to repre-
sent packet filters. FDD is a special type of MTBDD. For the purpose of defining
an FDD, we must first discuss its variables and terminals.

In Section 3.3.5, we defined a packet filter. We use the syntax described there to
show the transformation of the filter to the diagram representation. It does not af-
fect generality as the language contains all possible types of queries: exact match,
prefix match, and range checks. Our approach can be therefore easily modified to
include broader repertoire of tests. Let us recall that the filtering language consist-
ed of rules containing conjunctions of filtering terms.

Definition 5.4 FDD variables
By FDD variables we understand the set of all possible filtering terms of the filter-
ing language.

All variables testing a single field (i.e., sif, dif, saddr, daddr, sport, dport,
proto, cf. Figure 3.6) is called a class of FDD variables. E.g., all tests of dport
ranges belong to a single class which is distinguished from a class of saddr tests.

We distinguish three types of FDD variables27:

We must be aware of the fact that the classification is extremely fuzzy and serves mostly to show27

examples. Real-world filtering languages often support constructs like proto 0-50 as protocols are
also numbered.

5 Routing, ARP, and Filtering Combined Representing Filtering Rules as Decision Diagrams

77

1. exact match checks for protocols and interfaces, e.g., proto tcp,

2. prefix match checks for addresses, e.g., saddr 147.251.54.0/24,

3. range checks for ports, e.g., dport 1024-65535.28

Terminals of the diagram are Actions of the packet filter. Moreover, we need
a special terminal symbol called HSL (which stands for “hic sunt leones”). It de-
notes the position of the filter that corresponds to “the remaining filter rules,” as
we will see in Section 5.3.5. During the computation of the filter, it will be over-
written step-by-step by representations of subsequent rules.29

Definition 5.5 Filtering decision diagram
A Filtering Decision Diagram (FDD) is an MTBDD over FDD variables. Its termi-
nals are from Actions ∪ {HSL}.

We say that an FDD is finished if it does not contain the HSL terminal.
We use term reduced FDD (RFDD) in the same sense as for BDD.
An FDD is ordered (OFDD), if all paths of the FDD respect an order of vari-

ables < (variables smaller in the < relation appear higher in the FDD).

Motivation for ordering the FDD is twofold:

• it may make processing of FDDs faster (allowing to stop the search earlier in
recursive procedures traversing the structure),

• it may help rewriting the structure into the format of the target architecture
(i.e., first-match CAM where order of columns is prescribed).

We define the functions as order-independent as possible and the differences
are commented. We consider several types of ordering.

1. Total order. Relation < is a linear order over FDD variables.

2. Class order. We prescribe the order of classes of variables, e.g., we require that
all dport tests precede saddr etc. Variables inside a class are incomparable.

For handling range queries, it might be useful to allow variables of the form dport >= 1024. Nev-28

ertheless, we can use tests with mandatory lower and upper bounds as all the domains are finite. We
prefer not to make the theory more complex than necessary.
Although HSL is a terminal symbol from the decision diagram point of view, it can be understood as29

a non-terminal symbol in the process of filter composition.

5 Routing, ARP, and Filtering Combined Representing Filtering Rules as Decision Diagrams

78

3. No order at all, all the variables are incomparable. For the purposes of the
algorithms we present, we define the < relation to never hold. It allows to
write the algorithms in a uniform manner. (We do not call such FDD ordered.)

We will now define basic functions to handle FDDs. The functions are derived
directly from standard BDD operations as described, e.g., in [Andersen, 1998a].
Notes on principles of efficient BDD implementation can be found in [Brace et al.,
1991]. The FDD procedures have been implemented by Minaříková [Minaříková,
2005]; implementation details (e.g., node storage and memory handling) are also
discussed there.

5.3.2 Creating and Testing FDD Nodes

Function FDDCreate(n, l, h) is a standard procedure for creating nodes in re-
duced BDD. It returns a node u with var(u) = n, low(u) = l, and high(u) = h. The
nodes are stored in a hash table. When a suitable hashing scheme is employed,
the complexity of this function is constant on average [Andersen, 1998a].

The function first tests if l = h. In that case, l is returned immediately in or-
der to preserve non-redundancy. Otherwise, if the desired node is already present
in the hash table, it is returned, if not, it is newly created. It ensures the unique-
ness property. Using FDDCreate(n, l, h) in all cases when new nodes are created
guarantees that the structure remains reduced; we have to take care of the order
of variables only.

When total variable ordering is used, using FDDCreate(n, l, h) ensures that
the FDD representation is canonical [Bryant, 1992]. When we relax such a strict re-
quirement, we can obtain a pair of semantically equivalent structures that cannot
be unified because of they are not equal syntactically, so their equivalence cannot
be recognised. This behaviour is completely the same as for BDDs.

We define function FDDIsTerminal(n) that returns true if and only if the
FDD rooted by node n is terminal.

5.3.3 Restriction

Given an FDD u (i.e., the root of an FDD) and an assignment of a variable j (e.g.,
saddr 147.251.54.0/0) to be either high or low, restriction FDDRestrict(u, j,
v) computes an FDD under that assignment. Parameter v is the required value for
that assignment (high or low).

Intuitively, the result of the restriction is the following: “for v = high, we sup-
pose that variable j is satisfied, compute an FDD that does not test it again” and
vice versa, i.e., if v = low then we compute an FDD that supposes that j is not
satisfied and does not check it. The question we ask at each node is “based on

5 Routing, ARP, and Filtering Combined Representing Filtering Rules as Decision Diagrams

79

1 function FDDRestrict(u, j, v)
2 if FDDIsTerminal(u) then return u
3 fi
4 if v = high then /* j holds */
5 if j ⊆ var(u) then
6 return FDDRestrict(high(u), j, v)
7 fi
8 if j ∩ var(u) = ∅ then
9 return FDDRestrict(low(u), j, v)
10 fi
11 else /* v is low, we know j does not hold */
12 if j ∪ var(u) = whole domain of variable var(u) then
13 return FDDRestrict(high(u), j, v)
14 fi
15 if var(u) ⊆ j then
16 return FDDRestrict(low(u), j, v)
17 fi
18 fi
19 if var(u) < j then /* the variable is surely not present any more */
20 return u
21 else
22 return FDDCreate(var(u),
23 FDDRestrict(high(u), j, v), FDDRestrict(low(u), j, v))
24 fi
25 end function

Algorithm 5.2 FDDRestrict(u, j, v)

the fact we know the result of test j, is the test in this node necessary?” We re-
move all tests in the FDD that are not necessary based on such knowledge. The
pseudocode is shown in Algorithm 5.2.

The basic principle of computation is that we search for all nodes with the re-
stricted variable and replace them with their low- or high-child depending on the
variable evaluation.

In a standard BDD, no relationship among variables exists. This is not the case
of FDDs. Knowledge about a variable may also allow restricting other variables
belonging to the same class. E.g., if we know that dport 1024-65535 condition
holds, we may also reduce a condition dport 0-25 as it is obviously false. This
principle is expressed in lines 4–18 of the algorithm and Figure 5.2 where a case of
interval comparison is shown. We call such a restriction semantical.

5 Routing, ARP, and Filtering Combined Representing Filtering Rules as Decision Diagrams

80

Figure 5.2 Principles of FDD restriction

Each FDD variable represents a set of packets matching the variable. Set re-
lations and operations over FDD variables are performed over sets of matching
packets.

Let us start with the case we require the variable j to hold (i.e., v = high). In
that case, if condition j ⊆ var(u) holds then testing var(u) is not necessary, e.g.,
for j = dport 25-80 and var(u) = dport 0-1023. In that case, we can restrict
the node u to high(u) (Figure 5.2 a).

If variables j and var(u) are disjoint, and we know that test j holds, we do not
have to test var(u) as it would not hold anyway. We can restrict node u to low
(Figure 5.2 b). In other cases, no restriction can be applied—we are not able to
determine the relationship of the variables.

The other possibility is that we require v = low, i.e., we know that variable j is
not satisfied. Then, tests on variables represented by j may be satisfied only in the
complement of j. E.g., if j = dport 0-1023 we can conclude that the dport test
may hold for values 1024-65535. Therefore, if var(u) covers the whole comple-
ment of j (which is expressed as “ j ∪ var(u) = whole domain of variable var(u)” in
the algorithm), then we may restrict u to the high value as it brings no new infor-
mation (Figure 5.2 c).

In the final case, we know that j does not hold, therefore its subset cannot hold
either, so we can restrict to low(u) (Figure 5.2 d).

The function restricts all occurrences of variables that can be restricted under
the assignment. This is the reason why we continue the recursion (returning re-
sults of the FDDRestrict(high(u) or low(u), j, v)) in the 4–18 block. Successors of
the node can contain a variable that can be further restricted.

5 Routing, ARP, and Filtering Combined Representing Filtering Rules as Decision Diagrams

81

Let us discuss when the search can be stopped. The commands on lines 19–
20 serve to optimise the run of the procedure using the properties of variable or-
der. The procedure works correctly even if no order is defined—we defined the <
relation to never hold in that case. If class order is used, we may stop the recur-
sion when we leave the relevant class. When total order is defined, this condition
acts completely as the procedure for OBDDs described in the literature [Andersen,
1998a]. In all cases, the order of variables is preserved as this procedure may only
delete nodes and it never creates new variables.

Figure 5.3 Restriction example (by variable saddr 147.251.48.1/32
to high value)

An example of semantical restriction is shown in Figure 5.3. The diagram
(a) is the input. It is restricted by requiring the saddr 147.251.48.1/32 vari-
able to be high. First, the top node is restricted to its low value, then the saddr
147.251.48.0/24 is surely satisfied, so it is restricted to its high value. No other
nodes can be restricted, so the diagram (b) is the result.

5.3.4 Converting a Filtering Rule to an FDD

Converting a filtering term from F j into an FDD is straightforward. We rewrite
each term t from the rule into an FDD variable with the same test. The high
branch of the test leads to the terminal Action(F j), the low branch to HSL. Com-
pare with Figure 5.4. In its upper part, components of filtering rule “dport 0-
1023 saddr 147.251.54.0/24 sif 1 accept” are shown.

The terms are combined together by FDD function FDDAnd(u1, u2). See Algo-
rithm 5.3. It computes an FDD equivalent to the conjunction of the terms. This
function is based on the standard “Apply” BDD procedure [Bryant, 1992] for com-
puting a logical function of a pair of BDDs. Refinements to this function are relat-
ed to the fact we use it specially: only to combine FDDs where all terminals are

5 Routing, ARP, and Filtering Combined Representing Filtering Rules as Decision Diagrams

82

Figure 5.4 Converting a filtering rule to FDD

1 function FDDAnd(u1, u2)
2 /* solve terminal cases */
3 if u1 = HSL or u2 = HSL then return HSL
4 fi
5 if FDDIsTerminal(u1) then return u2

6 fi
7 if FDDIsTerminal(u2) then return u1

8 fi
9 /* perform Shannon expansion on the smallest variable */
10 h = smallest of nodes u1,u2 in relation <

11 uh
1 = FDDRestrict(u1, var(h), high)

12 ul
1 = FDDRestrict(u1, var(h), low)

13 uh
2 = FDDRestrict(u2, var(h), high)

14 ul
2 = FDDRestrict(u2, var(h), low)

15 return FDDCreate(h, FDDAnd(uh
1, uh

2), FDDAnd(ul
1, ul

2))
16 end function

Algorithm 5.3 FDDAnd(u1, u2)

equal or HSL—the terminals are taken from a single filtering rule. The advantage
of this approach over using the standard and more general Apply function is that
we do not have to solve relationship of all terminal symbols.

Supposing that non-HSL terminals in u1 and u2 are identical, this function is
commutative.

5 Routing, ARP, and Filtering Combined Representing Filtering Rules as Decision Diagrams

83

1 function FDDAppend(u1, u2)
2 if u1 = HSL then return u2

3 fi
4 if FDDIsTerminal(u1) then return u1

5 fi
6 /* perform Shannon expansion on the smallest variable */
7 h = smallest of nodes u1,u2 in relation <
8 uh

1 = FDDRestrict(u1, var(h), high)
9 ul

1 = FDDRestrict(u1, var(h), low)
10 uh

2 = FDDRestrict(u2, var(h), high)
11 ul

2 = FDDRestrict(u2, var(h), low)
12 return FDDCreate(h, FDDAppend(uh

1, uh
2), FDDAppend(ul

1, ul
2))

13 end function

Algorithm 5.4 FDDAppend(u1, u2)

First, terminal cases are tested. If one of the terminals is HSL (meaning “we do
not know yet in the filter”), the result is HSL, too. If a terminal is reached, we may
just append the remainder of the other structure. If a variable order is prescribed
and the parameters are ordered, the order is preserved by this step.

We shall precise meaning of line 10 of the algorithm. If no variable order is
used, let us understand the choice as “choose the first available variable (say, from
u1).” For class variable order, we choose a variable from the lowest available class.
For total variable order, the possibility of choice is abandoned completely—we
have to take the lowest available variable. Moreover, as all new nodes are created
with the FDDCreate(n, l, h) function, the resulting structure is reduced. Regard-
less of variable choice, Shannon expansion is used to propagate the computation
to child nodes.

In higher-level procedures, we use notation FDDConvertRule(f) for the func-
tion that converts a firewall rule f into an FDD by means of applying methods
described above. It returns the root of the FDD representing rule f .

5.3.5 Converting a Rule Set to an FDD

We have described a function to convert a single rule to an FDD. We have intro-
duced the HSL terminal to mark a spot in the FDD where the filter has not decid-
ed so far. Suppose we have an FDD representation of filtering rules from the first
up to rule i. We will now present a procedure to add rule i + 1 to the FDD.

Function FDDAppend(u1, u2) shown in Algorithm 5.4 searches for the HSL ter-
minal in the u1 FDD and replaces it with u2. It is also the principle of handling

5 Routing, ARP, and Filtering Combined Combining RA and Filtering into Single Operation

84

u = HSL
for i = 1 to Size(F) do

f = FDDConvertRule(Fi)
u = FDDAppend(u, f)

done

Algorithm 5.5 Converting a filter to the FDD representation

terminal cases in the algorithm. If HSL is found in u1, it is rewritten to u2. When
we reach another terminal, we return it.

The propagation through the structure is again done with Shannon expansion.
Discussion of relationship of variable order to the expansion is completely the
same as for function FDDAnd(u1, u2) described in Section 5.3.4.

Converting the whole filter to an equivalent FDD representation is shown in
Algorithm 5.5. We start with the HSL terminal and we apply rules one by one.
We shall show that the resulting FDD is finished (i.e., it does not contain the HSL
terminal). This is ensured by the fact that the last filtering rule is the default rule
containing just the action. Adding the last filtering rule, the HSL terminal of so-
far-processed filters is rewritten into the default action (it may have been rewrit-
ten earlier if some of the preceding rules was default—in that case the computa-
tion could have been stopped at that point as all subsequent rules are unreachable
anyway).

5.3.6 Implementation Notes

In a practical implementation, the length of addresses is too large to treat the ad-
dresses as single entities in hardware, mostly in case of IPv6. Therefore the ad-
dresses are split into sequences of registers and the registers act as FDD classes
in FDD processing. It has no effect on the functions themselves so we decided to
hide this detail in the theory in order not to add extra complexity to the text.

5.4 Combining RA and Filtering into Single Operation

We have described combining routing and ARP tables in Chapter 4, resulting into
the RA table represented in a trie. In Section 5.3, we discussed converting packet
filters into FDDs. In this section, we will combine both the structures together in
order to prepare a single lookup structure that can be converted to the hardware
engine.

5 Routing, ARP, and Filtering Combined Combining RA and Filtering into Single Operation

85

The basic idea is to distribute the packet filter into the RA table—to distribute rel-
evant filters to relevant places of the table according to destination address space
specification in filtering rules. The method is based on the following observation.

Theorem 5.6 Principle of filter distribution into address space
Let p ∈ IP and F be a packet filter. Let j1, . . . , jk be a subsequence of all indices
from 1, . . . , Size(F) such that p ∈ [F ji] for 1 ≤ i ≤ k. Let F′ consist of rules F ji for
1 ≤ i ≤ k. Then filters F and F′ give the same results on all packets with destination
address p.

Proof
Packets with destination address p would not match rules specifying another des-
tination address space. �

We maintain an FDD representation of the filter for each prefix in the RA trie.
Although it may seem as an extreme waste of memory, we argue that all the FDDs
are stored in a single hash table and common parts of them are therefore shared.
From implementation point of view, the RA table terminals contain pointers to ap-
propriate FDD roots. Formally, we add an extra output to the RA table (compare
with Definition 4.1).

Definition 5.7 RA table FDD output
For routing-ARP table RA, let FDD(RAi) be the FDD connected to the RAi record
for 1 ≤ i ≤ Size(RA).

As opposed to the Section 5.3 that was explained bottom-up, this topic should
better be presented top-down. Let us have a routing-ARP table RA and a packet
filter F. Let us suppose that FDD(RAi) is initialised to HSL for all prefixes in the
RA table. The main computation loop of the process of applying the filter on the
RA table is shown in Algorithm 5.6.

Lines 2–9 serve to determine the destination address space of the filtering rule.
If the filtering rule contains destination address specification, we remove it from
the rule and we remember the prefix. Otherwise, the rule applies to the whole ad-
dress space. The destination address space taken from the rule will be expressed
by the RA trie prefix.

Function PrepareSubtrie(p) searches for the prefix p in the RA trie. Follow-
ing two situations are possible.

1. The prefix p is present in the RA trie. No changes are necessary.

2. The prefix p is not in the trie. Let p′ be the longest prefix of p that is present
in the trie. In this case we create a new entry for p in the trie and we copy the
outcome from p′ into the p entry.

5 Routing, ARP, and Filtering Combined Rewriting the RAF Structure to LUP

86

1 for i = 1 to Size(F) do
2 if rule Fi contains daddr
3 then
4 let p be the address prefix from Fi daddr
5 let f be Fi with daddr removed
6 else
7 let p be the default route (i.e., the RA trie root)
8 f = Fi

9 fi
10 f ′ = FDDConvertRule(f)
11 PrepareSubtrie(p)
12 ApplyRuleToSubtrie(f ′, p)
13 done

Algorithm 5.6 Main loop of RAF computation

Such p′ always exists as we require the RA table to contain at least the de-
fault RA record. Meaning of the RA table will not be changed by this modifi-
cation. The prefixes that are routed by p would be routed by p′ in the original
table.

Finally, function ApplyRuleToSubtrie(f ′, p) traverses the whole subtrie de-
noted by prefix p (and including the prefix) and appends the rule f —calling the
FDDAppend(u, f ′) for the filter u that was originally in the trie—to all filters asso-
ciated with prefixes of the subtrie.

By the same argument we used for a single filter conversion, i.e., that the last
filter is the default filter, we can see that all filters produced in the structure are
finished as the default filter is applied to the whole RA structure.

From implementation point of view, it is likely that a large number of filters in
subtries is identical. We can use a cache of results of applying rule f to filters from
the subtrie, preventing the need to compute them again.

5.5 Rewriting the RAF Structure to LUP

In the beginning of this chapter (Section 5.2), we have presented a simple and ob-
vious method to combine RA tables and filters into a single operation lookup. The
main drawback of this was that we were not able to rewrite the result reasonably
into the target architecture. We will describe a procedure to rewrite the obtained
RA/FDD representation into a search that is partly performed by a first-match
structure—CAM, and by comparison instructions. The procedure dumps RA trie

5 Routing, ARP, and Filtering Combined Rewriting the RAF Structure to LUP

87

records to CAM and expands each row created by the filter related to the record
(Sections 5.5.1 and 5.5.2). In Section 5.5.3, we precise what types of queries are
suitable to perform in CAMs. In Section 5.5.4, we demonstrate that the conversion
is correct. Finally, Section 5.5.5 describes how comparison instructions that finish
searches are computed.

Besides the basic properties of the design we have summed up in Section 5.2.2,
we suppose the following. (Again, motivation was described in Chapter 1.)

• The initial RA trie (i.e., address width) fits into CAM.30

• A list CAMList prescribes classes of variables tested by remaining columns of the
CAM. We refer to fields of the list as CAMListi for 1 ≤ i ≤ Size(CAMList). An
example of the CAMList may be saddr, sif, proto. If another header field is
necessary to classify a packet, it must be matched by the instructions.

• The (SRAM) lookup instructions may access any field of the headers. The or-
der of testing header fields by the instructions is arbitrary.

Definition 5.8 CAM rows
We describe a CAM row by the CAMRow symbol. Technically, CAMRow is a ter-
nary string of values 0, 1, and don’t-care. It contains destination address prefixes
and values of header fields prescribed by CAMList.

Resulting values are attached to the CAMRow:

• NHMAC(CAMRow) is the MAC address of the next hop,

• NHInt(CAMRow) is the interface to reach the next hop, and

• FDD(CAMRow) is the FDD representation of the filter.

We have connected next hop interfaces and MAC addresses directly to CAM
rows. We are allowed to do so: we supposed that width of CAM is not smaller
than address width. Moreover, if we propagated the values to terminals of at-
tached FDDs, we would need a terminal for each action and (MAC address, in-
terface) pair, increasing the number of FDD terminals rapidly.

We will now describe the process of rewriting the RAF structure into LUP.

Although resolving the destination address by instructions is possible, it would make the algorithms30

unnecessarily complex. This requirement is reasonable as commercially available CAMs are capable
to hold the addresses.

5 Routing, ARP, and Filtering Combined Rewriting the RAF Structure to LUP

88

1 Initialise CAMRow to don’t-care values
2 /* traverse the RA trie in non-increasing prefix lengths */
3 for i = 1 to Size(RA) do
4 insert [RAi] into CAMRow
5 if RAi = SW
6 then
7 CAMRow = SW
8 else
9 NHMAC(CAMRow) = NHMAC(RAi)
10 NHInt(CAMRow) = NHInt(RAi)
11 fi
12 FDD(CAMRow) = FDD(RAi)
13 LUPInsertCAMFilter(0, CAMRow)
14 done

Algorithm 5.7 Converting RAF structure into LUP

5.5.1 Rewriting the RA Part

On the highest level, we dump the RA records in non-increasing prefix lengths
into CAM. See Algorithm 5.7. We start with a CAM row initialised to don’t-care
values. We insert the prefix from the RA table to the CAM row and copy appro-
priate output values. Finally, we set the FDD of the CAM row. Intuitively, we
maintain the FDD associated with the CAM row as the FDD representing the rest
of the filter that shall be performed to resolve packets matching the row. Function
LUPInsertCAMFilter(0, CAMRow) adds FDD variables that can be matched in
CAM and finishes the CAM row. Its first parameter denotes that no CAMList el-
ement has been processed so far, the other is the current CAMRow containing the
destination address prefix.

5.5.2 Converting FDD to First-Match CAM

Function LUPInsertCAMFilter(i, CAMRow) (see Algorithm 5.8) computes the
content of CAM and its connection to the FDD that finishes resolution of matched
headers. It expands variables belonging to classes prescribed by CAMList into a
first-match structure and connects the lines of the structure to appropriately re-
duced FDDs that finish the classification. Parameter i is the index of so-far-pro-
cessed CAMList entries. Parameter CAMRow is the content of currently processed
CAM row.

5 Routing, ARP, and Filtering Combined Rewriting the RAF Structure to LUP

89

1 function LUPInsertCAMFilter(i, CAMRow)
2 i = i + 1
3 if i ≤ Size(CAMList) then
4 /* next CAMList field shall be prepared */
5 choose an FDD variable j belonging to CAMListi

6 if no such j exists in FDD(CAMRow) then
7 LUPInsertCAMFilter(i, CAMRow)
8 else
9 /* prepare CAM rows for both possible j values */
10 CAMRowh = CAMRow /* incl. output values */
11 CAMRowl = CAMRow /* incl. output values */
12 FDD(CAMRowh) = FDDRestrict(FDD(CAMRow), j, high)
13 FDD(CAMRowl) = FDDRestrict(FDD(CAMRow), j, low)
14 insert value of j into CAMRowh

15 /* keep don’t-care values in CAMRowl */
16 /* recursion: insert subsequent fields */
17 LUPInsertCAMFilter(i, CAMRowh)
18 LUPInsertCAMFilter(i − 1, CAMRowl)
19 fi
20 else /* terminal cases */
21 write CAM row CAMRow to the output
22 fi
23 end function

Algorithm 5.8 LUPInsertCAMFilter(i, CAMRow): placing FDD into CAM

In Algorithm 5.8, we first check if the CAM row has been finished. If it is not
the case (lines 4–19), we continue the recursion splitting the search on a suitable
variable if possible. We will discuss this part of the algorithm in detail.

• First, we try to find a variable that can be resolved in currently processed CAM
column (line 5). It must belong to the CAMListi class. We should choose a
variable that really appears in the FDD(CAMRow) in order to allow the CAM
row to be split into two (hence not wasting the CAM space). We may, e.g.,
traverse the FDD until we find a variable belonging to CAMListi class.

• If no such variable is found, we cannot use this CAM column to improve res-
olution of the FDD and the space must be left unused. In that case, we keep

5 Routing, ARP, and Filtering Combined Rewriting the RAF Structure to LUP

90

don’t-care values in appropriate positions of the CAM row and continue to the
next CAMList field.

• In a case that a suitable variable j belonging to CAMListi has been found, we
shall create two copies of the current CAM row, to find a suitable FDD vari-
able belonging to the CAMListi class, to compute FDDs for successful test of
the variable and the opposite and to continue the recursion in both cases, see
lines 9–18.

− In lines 9–15, we create two copies31 of the current CAMRow including the
output values (i.e., NHMAC(CAMRow) and NHInt(CAMRow) or SW). The
first copy CAMRowh will be used for the case that variable j is satisfied and
CAMRowl for the opposite.

We compute both restrictions of the FDD for j. Note that the resulting
FDDs differ (if they did not, the node containing j would not be reduced).

We insert the test of variable j into appropriate position of CAMRowh.
Don’t-care symbols stay unchanged in CAMRowl.

Finally, we continue the recursion for the rows split depending on value
of variable j. In lines 17–18, first the CAM row for high value of variable j
is created and then the opposite.

In the case of CAMRowl, the block originating from this expansion is
evaluated when variable j does not hold. We can use the same CAM col-
umn to insert another possible variable from the same class to test, there-
fore we call the recursion for i − 1. Note that when no suitable variable can
be found, don’t-care symbols will be preserved here.

The remaining case is that the CAM row has been finished. Then, we just write
the CAMRow to the output. The algorithm emits CAM rows one-by-one in first-
match order.

5.5.3 Query Types in CAM

We presented Algorithm 5.8 hiding the problem that various types of queries dif-
fer in price paid in CAM. CAM is suitable to perform exact match and prefix
match queries, a test of this type can be performed by a single CAM row, there-
fore the algorithm works exactly as we presented it.

This is not completely the case of range queries. To perform such queries in
general, the range has to be converted into prefixes, i.e., expanded into several

We would not create two copies in a real implementation—we only change the associated FDD, so31

creating a single copy is sufficient. Optimising the procedure would make it much less readable.

5 Routing, ARP, and Filtering Combined Rewriting the RAF Structure to LUP

91

CAM rows [Spitznagel et al., 2003], [Taylor and Spitznagel, 2005]. We can under-
stand creating CAM rows in Algorithm 5.8 as creating blocks of CAM rows that
cover the range with prefixes and all the rows in the block are handled as a single
unit in the algorithm.

If the choice of variable classes is rich enough, such approach would lead to
wasting CAM space. Therefore, we should prefer using CAM for other types
of queries than range ones. To make the implementation easier, we can solve
this problem by a “design decision,” we just never include range queries to the
CAMList and test them by SRAM instructions (we always need up to two compar-
ison instructions to check a range).

5.5.4 Correctness of the CAM Search

We have to show that the output interface and next hop MAC address is the same
in the RA trie and in the CAM computed by Algorithm 5.7. It would be obvious if
the Algorithm 5.7 did not use Algorithm 5.8 as a subroutine—then, the RA prefix-
es themselves are filled into CAM in non-increasing prefix lengths, therefore the
first matching CAM entry corresponds to the longest matching prefix in the RA
trie (using the same principle as in Section 3.1.3).

The question is whether using columns of CAM to represent parts of packet
filter does not interfere with the result of routing. In the following theorem, we
show that the result of RA lookup (i.e., next hop interface and MAC address) is
the same for both RA and CAM generated.

Theorem 5.9 Result of RA is correct in CAM
Let p ∈ IP. Let CAMRow be the matching CAM row for a packet destined to
address p. Then results of both RA(p) and CAMRow are either SW or the inter-
face and MAC address of the next hop are identical for RA(p) and the matching
CAMRow.

Proof
Let q be the longest matching prefix for destination address p in the RA table.

Taking into account the construction of CAM in Algorithm 5.7, we can divide
the CAM into three subsequent blocks:

• block A contains prefixes at least as long as q that do not match p (therefore p
cannot match in this block),

• block B contains prefix q (possibly repeated several times because of using Al-
gorithm 5.7),

• block C contains the rest of CAM content.

5 Routing, ARP, and Filtering Combined Complexity Considerations

92

The theorem holds if the packet matches block B as all records in this block
originate from the RA prefix q. We will show that packets with destination ad-
dress p match in block B (regardless of other header fields and packet filter set-
ting).

Algorithm 5.8 either preserves don’t-care values or it creates a pair of rows (see
lines 17–18). In the latter case, the second row produced keeps don’t-care values.
Therefore, the very last row produced by the recursion contains only don’t-care
symbols. The last line of block B contains the prefix q and don’t-cares only, so the
destination address p must match in block B. �

5.5.5 Creating Lookup Instructions

Each CAM row we produced in the previous section has an associated FDD that
finishes classification of packets matched there. The tests in the FDD can be direct-
ly rewritten into SRAM instructions. We stored all FDDs in a single structure—a
hash table keeping their nodes. We can rewrite the hash table into SRAM instruc-
tions. For each CAM row CAMRow, we only arrange the computation to jump to
appropriate root of FDD(CAMRow).

This approach does not insert unreachable parts of the structure into the in-
structions. To show this, we have to indicate how node storage is implemented.
FDD nodes are stored in a hash table and each node has an associated value denot-
ing “how many times” the node is used in all structures represented by the hash
table. We only have to delete FDDs that are not used anymore. This is done de-
creasing the usage counter of appropriate nodes. When the counter reaches zero,
the node can be removed. In Algorithm 5.8, this situation occurs when the restrict-
ed FDDs for CAMRowh and CAMRowl are computed. Then the FDD associated
with the original CAMRow can be deleted, so parts of the structure that became
unreachable are removed.

5.6 Complexity Considerations

Let us suppose that the maximum number of terms in a filtering rule is n. In the
operating system, rules are evaluated one-by-one. Taking evaluation of a single
term as a unit of complexity, we need O(Size(F) · n) operations in the worst case to
test a packet against the filter.

In the FDD as described in Section 5.3, the estimate of time complexity can
be easily seen when we relax variable ordering and we do not even require the
FDD to be reduced. In that case, traversing the FDD is completely the same as
evaluating the filter in software lazily (i.e., when a term does not hold, we go im-
mediately to the subsequent rule). Therefore the theoretical worst case complexity

5 Routing, ARP, and Filtering Combined Packets Delivered to the Host Computer

93

is still O(Size(F) · n). Practically, properties of reducedness and variable ordering
find identical nodes and unify them, decreasing the number of tests needed.

The number of tests is moreover reduced by the method of distributing filters
into target address space (Section 5.4). We (1) do not test destination address space
again in the filter and (2) we do not include filters that would not match anyway
because of another destination address space specified.

As we have shown in Section 4.2.6, time to evaluate the RA table in software
is O(w) where w is bit length of the address. By rewriting the structure into CAM,
we reduce it to O(1) by means of brute-force hardware. Presuming that the RA
structure fits into CAM, the whole evaluation of routing, ARP, and filtering can be
therefore computed in O(Size(F) · n) time. This time is necessary either to classify
a packet or to decide that the packet cannot be classified by the hardware engine
and must be sent to the operating system. In any case, this time is not worse than
time necessary for software classification.

As the CAM computation and evaluation of comparison instructions can be
pipelined, we get the whole time spent in CAM “for free.”

Theoretical worst case space complexity estimate is the same as for OBDDs—
exponential [Bryant, 1995]—as can be seen from the algorithms we used for con-
structions, they use recursive calls based on Shannon expansion.

5.7 Packets Delivered to the Host Computer

We have discussed handling forwarded traffic only. The remaining problem is
twofold.

1. The host machine can contain network interfaces that do not belong to the
card, so traffic forwarded through them cannot be switched by the accelerator
and must be delivered to the operating system, too.

2. We shall show how traffic destined to the host computer can be delivered there
and how it can be passed through a hardware accelerated input packet filter.

To take into account that not all interfaces belong to the accelerator, we have
to change the construction of RA table described in Section 4.2.3. During compu-
tation of the RA table, we test if the interface prescribed by the route we process
belongs to the accelerator. If so, we use the original algorithm. In the opposite
case, we just insert a routing-ARP record destined to software—the packets match-
ing this record must be forwarded to an interface outside the accelerator. Note
that all arguments on correctness of the method remain valid as we considered
sending a packet to the operating system as a correct result.

5 Routing, ARP, and Filtering Combined Dealing with Implementation Limitations

94

To solve delivering traffic destined to the host computer, we have to create a
list of all IP addresses configured on interfaces of the accelerator. We insert those
addresses into a special RA table and set their destination to software. We expand
this RA table into the beginning of CAM as a completely independent part.

We combined a forwarding filter with the forwarding RA table (see Section 3.3.3
for the discussion on various types of filters). With the same method, we can
apply an input filter to the RA table containing own addresses. As we have dis-
cussed in Section 3.3.3.3, applying the input filter is not mandatory as the packets
are filtered by the operating system anyway. It can nevertheless turn out useful
in case of attacks—we can discard unwanted traffic in the accelerator, avoiding
system bus overload.

From implementation point of view, both the forwarding filter and the input
filter applied on traffic destined to the host computer can be stored in a single
hash table. It allows processing both filters in a uniform manner, moreover saving
memory as common nodes of the filters are shared.

5.8 Dealing with Implementation Limitations

One of problems we deal with in an implementation is that CAMs are quite limit-
ed in their sizes. We therefore have to give methods how to arrange the structures
in a reasonable manner to deal with such a limitation.

We have designed the method of rewriting the RAF structure into CAM based
on a single requirement: that the width of CAM is capable to contain destination
addresses. The rest of the method (i.e., Algorithm 5.8) adapts to width of CAM
according to the configuration of CAMList parameter.

The limit that can be met easily is the number of records in the CAM. The
easiest solution to the situation when we ran out of CAM rows during complet-
ing CAM content is based on principles of software cooperation described in Sec-
tion 4.1. We just stop building CAM content and insert a final row containing
don’t-cares only destined to SW. The main drawback of this method is that it is
extremely rough—it does not take into account that majority of traffic could be
handled by records we did not insert into the structure, forcing the operating sys-
tem to handle it, not using the potential of the space in the memory we wasted to
keep much less frequently used records.

One of the most beautiful properties of the Algorithm 5.8 is that it is very
adaptable. We can save space of CAM regulating expansion of each row sepa-
rately. We can stop the recursive expansion of the variables into CAM at any level,
the result still behaves correctly. If some knowledge of traffic distribution over RA
records is available, we can prefer expanding most frequently used entries over
less used ones.

5 Routing, ARP, and Filtering Combined Dealing with Implementation Limitations

95

Similar situation can occur with instructions in SRAM. Any FDD subgraph can
be removed and replaced with a terminal sending all the traffic to the operating
system.

The form and size of the resulting lookup structure depends heavily on the
CAMList parameter and ordering of variables in the FDD. We leave investigating
methods of setting both the parameters as a future work. Effects of setting the
CAMList parameter and other quantitative measures will be presented in the fol-
lowing Chapter 6.

96

6 Experiments

Personnel operating the equipment must be trained and
competent; must not conduct themselves in a careless,

willfully negligent, or hostile manner; and must abide by the
instructions provided by the documentation.

– [Juniper Networks, Inc., 2005a]

While time complexity estimates of FDD based RAF structures suggest that they
shall behave well, their overall size complexity is exponential. On the other hand,
BDD-based structures are known to behave “much better” compared to their ex-
ponential theoretical limit in practice.

In order to evaluate usability of the FDD based RAF structures, we study them
experimentally in terms of

• memory usage,

• time required to perform lookup.

Structures used for evaluation have been obtained using a prototype imple-
mentation of the method.

Evaluating the structure in hardware, we would obtain absolute values and
timings. On the contrary, the results would be very difficult to obtain and to
interpret—they would depend not only on the packet classification unit itself, but
also on the rest of the hardware design. Anyway, the complete hardware design
that would allow testing the overall performance (from input to output port) and
compare it to overall performance of a software router is not available at the time
of writing. When software simulation is employed, we get hardware-independent
results that can be easily parametrised by properties of the actual accelerator.

Section 6.1 describes the simulation environment. Data for experiments have
been obtained from routers serving in a production network, issues related to
source experimental data are presented in Section 6.2. The guide to interpretation
of the results is given in Section 6.3. Section 6.4 contains selected and comment-
ed results. Detailed results are shown in Appendix B. The concluding Section 6.5
summarises the results.

6 Experiments Simulation Environment

97

6.1 Simulation Environment

A prototype implementation called lupgen (LUP GENerator) has been used to
generate RAF structures out of source tables. Properties of the structures have
been collected and real packet traces have been simulated by Perl scripts.

The packet filtering language used as lupgen source has been presented in Fig-
ure 3.6 in Section 3.3.5. It contains all types of queries, i.e., prefix, range, and exact
matches.

The scenario for measurements in this chapter is usually the same: we com-
pute the RAF structures out of input data with lupgen, determine its “static prop-
erties” (e.g., size of memories occupied), and compute behavioural characteristics
on a set of packets.

Software simulation is feasible, unfortunately, it has a disadvantage: the mea-
surements are performed on a snapshot of tables only. In the reality, a packet that
shall be delivered to a node with currently unknown ARP record is sent to the
operating system and cause ARP protocol to be initiated. The change in the ARP
table causes the whole structure to be recomputed, so the previously unaccelerat-
ed traffic gets processed in the accelerator. This behaviour is not reflected in the
simulation, we just take initial value of the ARP table and the table is unchanged
thorough the experiment. Hence, it does not evaluate if the packet is accelerated
or it has to be sent to the operating system because of a missing ARP record. The
simulation is not able to measure the ratio of packets handled by the accelerator
and sent to the operating system to be processed.

In the simulation, we assume potentially infinite memories, i.e., we have mem-
ory capable to contain the structures however large they are. We do not bound to
concrete implementation limitations; none of the techniques of dealing with them
(as we have described in Section 5.8) has been incorporated to the simulation en-
vironment. It makes experiments independent on an actual implementation and
sizes of memories used in such implementation, such results may also serve to de-
termine suitable hardware memory sizes. The numbers obtained are “best” in the
sense they prefer using CAM rows for a given CAM width. Limiting the number
of CAM rows and employing adaptive techniques would move parts of the com-
putation into the FDD part.

Besides routing and ARP tables and the packet filter setting, results also de-
pend on the following parameters:

• allocation of CAM columns (i.e., parameter CAMList described in Section 5.5);
allocation of columns also describes CAM width used,

• FDD variable order used internally in the generator.

6 Experiments Experimental Data

98

Data set # of routes # of ARP # terms in filter # of filters

1 643 623 105 56
2 889 102 80 35
3 889 162 80 35

Table 6.1 Characteristics of Measurement Sources

Allocation of CAM columns will be chosen uniformly for most experiments
to make them comparable and one of the experiments studies dependency of the
resulting structure on CAMList. Order of FDD variables is based on class order
depending on CAMList in all cases (cf. Section 5.3.1 for variable order discussion).

6.2 Experimental Data

The sources we need for measurements are basically a routing table, ARP table,
and a packet filter setting. Moreover, a sample of traffic will be used to evaluate
the structures in real conditions. The question is how and where to obtain such
data.

Various routing table and traffic samples are available (e.g., [Andersen et al.,
2001], [Feamster et al., 2003], [Claffy, 1999]). Alas, to the author’s knowledge, no
publicly available source exists that contains all data we need for our measure-
ments. Especially security administrators are extremely careful to keep their ac-
cess lists secret.

Generating measurement sources randomly is not able to produce realistic re-
sults. None of the sources is random. Routing tables depend mainly on network
topology and partly on traffic, ARP tables depend on routing and recent history
of traffic, packet filters reflect security policies (which is again based on expected
and real traffic) and are highly structured.

For the reasons above, the author decided to obtain real-world routing and
ARP tables, packet filters, and packet traces. The data sets have been extracted
from edge routers connecting mid-sized academic networks to the national aca-
demic backbone32. As the data originate from production networks, the author is
not allowed to disclose details of packet filters and packet traces.

Three data sets have been prepared. Their properties are summarised in Ta-
ble 6.1. For each data set, number of routing records and ARP records is shown
in the table. The number of terms is the total number of filtering language terms
in each filter (excluding actions), the last column contains the number of filtering

The author would like to thank Petr Adamec and David Rohleder for kindly providing the data.32

6 Experiments General Notes on Experimental Results

99

rules. Packet filters in all sets are typical “permissive” ones, they accept every-
thing except what is explicitly forbidden.

Data sets 2 and 3 originate from boxes that share load of the same network.
Their routing tables are very similar and their packet filters are completely iden-
tical. We use them to examine whether the structures really behave in a similar
manner for similar inputs. Data set 1 originates from a different autonomous sys-
tem than sets 2 and 3.

In the experiments, we need several lengths of packet filters and routing tables.
A packet filter of length n have been obtained taking n−1 rules from the beginning
of the filter and adding the very last rule (which is the default rule containing just
the action accept for permissive filters) in order to make the filter total. The rea-
son of taking the “beginning” of the filter is twofold. First, the order of rules is
significant, we cannot choose rules in random. Second, filtering rules are hand-
made, we can assume that some care have been taken in choosing rule order [At-
tar, 2002]. In case of routing tables, no special route order is required, we therefore
take the specified number of rules in random, only taking care that all sets pro-
duced contain the default route.

6.3 General Notes on Experimental Results

In all experiments, we obtain two types of results:

• “static” characteristics of the generated structures, i.e., sizes of memories and
minimum/maximum lengths of FDD traversals,

• “dynamic” characteristics, i.e., behaviour of the RAF structure representation
on a traffic sample.

Minimum and maximum lengths of FDD traversals describe time required to
evaluate a packet against the structure. As we can see from the algorithms con-
structing the structure, the smallest minimum value of FDD is 1, in other words,
at least the terminal FDD node must be visited.

In practice, units performing CAM lookups and interpretation of instructions
can be pipelined, therefore a constant covering the CAM lookup time can be sub-
tracted from the FDD traversal result (we obtain some time “for free” thanks to
pipelining). However, we will not include pipelining into the results as the actual
number of FDD evaluations that can be performed during CAM lookup is hard-
ware implementation dependent.

Dynamic characteristics of the structure have been obtained simulating look-
ups of packets of the traffic sample in the structures and counting depths where

6 Experiments Experimental Results

100

Value Meaning

Proto Protocol

SrcIP0 Source IP address 16 most significant bits

SrcIP1 Source IP address 16 least significant bits

DstIP0 Destination IP address 16 most significant bits

DstIP1 Destination IP address 16 least significant bits

Table 6.2 Values of CAMList

terminal actions were reached. The result is a histogram of number of packets
requiring certain number of FDD steps to be classified.

Characteristics of the structures depend on setting of CAMList, i.e., prescrip-
tion what parts of packet information shall be handled by CAM. The total width
of fields prescribed by CAMList must not exceed the width of the CAM.

The testing packet filter supports protocols, source and destination addresses,
and source and destination ports. As handling port numbers is quite complex in
CAM as we have discussed in Section 5.5.3, the decision was made not to allow
port numbers there. All port tests must be performed by the FDD. In the imple-
mentation, the FDD variables are not exactly the same as in the theoretical descrip-
tion, addresses are split into two pieces indexed with 0 and 1 containing 16 most
significant and least significant bits of the address. Possible members of CAMList
are shown in Table 6.2.

6.4 Experimental Results

In the experiments, we keep all sources except one fixed throughout a series of
tests. The experiments are divided into three parts: variable filter length (Sec-
tion 6.4.1), variable routing table length (Section 6.4.2), and effect of changing the
CAMList parameter (Section 6.4.3).

All groups of experiments consist of studying static properties of structures
generated and tests performed on traffic sample of 75,000 packets captured on the
same box the source tables were obtained.

The setting of all experiments is CAMList = Proto, DstIP0, DstIP1, SrcIP0
unless said otherwise. Characteristics of the data sets and the way how lists of
variable lengths were obtained have been given in Section 6.2.

6 Experiments Experimental Results

101

6.4.1 Variable Filter Length

In the first set of experiment, we study how packet filter size affects the resulting
structures.

6.4.1.1 CAM Size

In Figure 6.1, we can see how number of CAM rows depends on packet filter
length for all data sets. Big increases in the number of CAM records correspond to
blocks of source address tests in the filters that caused expansion of large blocks
of CAM rows by testing SrcIP0. For example, in sets 2 and 3, the only rules of the
form deny saddr for large networks that do not contain additional conditions
(and they therefore apply to the whole structure) appear between rules 19 and 24.

Sets 2 and 3 have identical filters and very similar routing tables. They were
expected to produce similar results. Indeed, their results differ in order of ones, so
in the resolution of the graph, the difference is invisible. Higher number of CAM
rows for the set 1 is caused by the number of source address tests related to the
complete destination address space that are expanded into the CAM.

0 5 10 15 20 25 30 35 40 45 50 55 60
Filter length

0

5000

10000

15000

C
A

M
 ro

w
s

Data set 1
Data set 2
Data set 3

Figure 6.1 Number of CAM rows depending on filter length

6.4.1.2 FDD Nodes

Figure 6.2 shows the number of FDD nodes (i.e., the size of memory) needed to
represent the filter for varying filter lengths. The shallow characteristics of sets

6 Experiments Experimental Results

102

2 and 3 corresponds to the fact that those filters tend to test port ranges combined
with other (mostly destination address) conditions and the number of distinct port
range tests is small. On the opposite, set 1 contains a number of various port
range tests—partly bound to destination addresses—starting from rule 30.

0 5 10 15 20 25 30 35 40 45 50 55 60
Filter length

0

50

100

150

200

250

300

FD
D

 n
od

es

Data set 1
Data set 2
Data set 3

Figure 6.2 Number of FDD nodes depending on filter length

6.4.1.3 FDD Paths

The minimum number of FDD tests when evaluating a packet is 1 (as follows im-
mediately from the construction of memories). Such paths were reachable prac-
tically in all structures we obtained, therefore, we do not present shortest paths
graphically. It occurs in cases when CAM contains all classes necessary to classify
a packet.

If the content of CAM is not sufficient to perform the classification, the impor-
tant value is length of the maximum path traversable in the FDD structure, which
is also the maximum time necessary for the classification. This value is theoretical-
ly bound from above by the total number of filtering terms in the filter.

In Figure 6.3, we can see that practical values are strongly below the theoreti-
cal maximum, e.g., maximum depth for data set 1 is 21 for a filter with 56 rules
containing 105 filtering terms.

6 Experiments Experimental Results

103

0 5 10 15 20 25 30 35 40 45 50 55 60
Filter length

0

5

10

15

20

25

M
ax

im
um

 F
D

D
 s

ea
rc

h
le

ng
th

Data set 1
Data set 2
Data set 3

Figure 6.3 Maximum paths in FDD depending on filter length

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 56

Figure 6.4 Histogram of FDD depths for data set 1 (56 filtering rules)

6 Experiments Experimental Results

104

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000
Pa

ck
et

s

Filter length 35

Figure 6.5 Histogram of FDD depths for data set 2 (35 filtering rules)

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 35

Figure 6.6 Histogram of FDD depths for data set 3 (35 filtering rules)

6 Experiments Experimental Results

105

6.4.1.4 Traffic Samples

For brevity, only several examples of traffic processing (the ones with full filters)
are presented in this section. Complete results can be found in Appendix B, Sec-
tion B.1.

The histograms describe how many packets out of the sample of 75,000 is re-
solved in a certain depth of the FDD. In the first data set (Figure 6.4), majority of
the traffic needs 20 FDD tests. We can see small peaks at levels 10 and 12. Because
of differences in orders of magnitude, we present the histograms in logarithmic
scales.

The graph in Figure 6.5 preferred significantly shorter lengths. The result in
Figure 6.6 has maximum FDD path of 5 steps and vast majority of packets in the
sample was resolved in just one step (i.e., by CAM only).

In general, results obtained correspond to the principle of network traffic local-
ity: in packet samples, several large data streams (that result into identical actions
in the filter) can be discovered.

6.4.2 Variable Routing Table Length

This section studies effects of routing table length on characteristics of resulting
structures, presuming all other sources are fixed in a particular testing data set
(especially, we take complete packet filters).

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950
Routing table length

0

5000

10000

15000

C
A

M
 ro

w
s

Data set 1
Data set 2
Data set 3

Figure 6.7 Number of CAM rows depending on routing table length

6 Experiments Experimental Results

106

Name CAMList value

A Proto, DstIP0, DstIP1

B Proto, DstIP0, DstIP1, SrcIP0

C Proto, DstIP0, DstIP1, SrcIP1

D Proto, DstIP0, DstIP1, SrcIP0, SrcIP1

E Proto, DstIP0, DstIP1, SrcIP1, SrcIP0

Table 6.3 Effects of CAMList—CAMList shorthands

As we can see in Figure 6.7, the size of CAM is approximately linear with re-
spect to the length of routing table. Slight variations are caused by expansion ARP
records in local networks and by expanding FDD variables into CAM.

We have experimentally verified that size of the resulting FDD as well as max-
imum FDD path length do not depend on routing table size at all, supposing that
the routing-ARP of the structure fits into the CAM.

As we used the full packet filters for all data sets, the results presented in the
previous Section 6.4.1 for maximum filter length hold independently on routing
table size. The same is true for traffic measurements, the reader can refer to Sec-
tion 6.4.1.4, the histograms depicted there contain full length filters, they are also
valid for all measured routing table sizes.

6.4.3 Effect of CAM Allocation

The resulting structure depends strongly on the form of the CAMList parameter,
i.e., prescription what parts of packet information shall be processed by CAM. In
practice, the limiting factor for CAMList choice is the width of the CAM and part-
ly also the fact that range queries are difficult to express in CAM (cf. Section 5.5.3).
We have left the question how CAMList shall be chosen as future work. To demon-
strate that a suitable method of CAMList choice is crucial, we give measurement
results for several possible CAMList values.

Table 6.3 gives an overview (and symbolic names defined there we will use
for brevity) of the choices of CAMLists we used for the experiment. Note that
CAMList must contain at least destination addresses. In our implementation, a
register describing level 3 flags must be also included in CAM (in order to handle
erroneous packets), therefore protocols must be also included; CAMList A is the
absolute minimum. Lists B and C add one half of source address, the remaining
lists insert whole source addresses into CAM. Lists D and E have the same widths,
only high and low parts of source IP addresses are swapped.

6 Experiments Experimental Results

107

CAMList CAM rows FDD nodes FDD min path FDD max path

Data set 1

A 1,272 143 2 29

B 10,170 272 1 21

C 10,176 382 1 26

D 19,054 129 1 20

E 63,496 129 1 20

Data set 2

A 1,128 49 1 11

B 3,264 26 1 5

C 5,050 27 1 6

D 7,151 7 1 3

E 14,934 7 1 3

Data set 3

A 1,128 49 1 11

B 3,264 26 1 5

C 5,050 26 1 6

D 7,151 7 1 3

E 14,934 7 1 3

Table 6.4 Effects of CAMList

Results are presented in Table 6.4. For each data set and for each CAMList
choice, the table contains number of CAM rows needed, number of FDD nodes,
and minimum and maximum path traversable in the FDD.

We can see that adding fields to CAM, length of the maximum traversable
FDD path tends to decrease. Comparing CAMLists B and C and mainly D and E,
we observe that preferring higher parts of source addresses in CAM leads to sig-
nificantly better results in terms of CAM rows needed and slightly in lengths of
FDD paths. This is clearly visible mainly for variants D and E in the data set 1
when length of CAM needed increases more than three times only because of vari-
able order choice. Methods of suitable variable order choice need further investi-
gation.

Traffic sample results for variable CAMList are presented in Appendix B.2.

6 Experiments Evaluation of Experimental Results

108

6.5 Evaluation of Experimental Results

The results presented in this chapter are not bound to a real implementation. To
fulfill the plan we stated in the beginning, i.e., to evaluate FDD based RAF struc-
tures in terms of memory usage and lookup time, we shall discuss that the struc-
tures are usable in the real world. We split the discussion into two parts, memory
usage in Section 6.5.1 and time properties (Section 6.5.2).

6.5.1 Memory Usage

Size of available CAMs is in order of megabits. A 2 Mbit CAM can be configured
to the width of 136 bits (which is sufficient to contain all CAMList configurations
we used), having 16,384 rows. In this configuration, most of the experiments fit
into such CAM. Cases when the required number of CAM rows exceeds reason-
ably the size of memory can be solved by methods described in Section 5.8, using
“inner scalability” of the method.

CAMs up to 18 Mbits are available on the market, which significantly exceeds
memory requirements of the method with realistic testing data sets. Those devices
are configurable to various widths. Further research is needed to find a suitable
way to set the trade-off between CAM width and number of rows. The method
does not depend specifically on size of a single CAM, more CAM units can be
employed in the following way (“outer scalability” of the method). Let us consid-
er configuring a pair of CAMs “one below another.” If the first unit matches, its
result is used. In the opposite case, the result of the second unit is taken. Both
searches can be performed in parallel, thus time requirements are the same as for
a single chip. This approach can be generalised to more units than just two.

The major problem is not the CAM size but the choice of a suitable variable
order, as we can see in the experiment with variable CAMList (cf. Table 6.4). A
method (at least a good heuristics) to find a suitable order is necessary.

In order to interpret the FDD part of the structure, FDD nodes are rewritten in-
to the form of comparison instructions in a static RAM. We are safely below limit
of such memories, at most hundreds of FDD nodes were occupied in the experi-
ments, whereas hundreds of thousands instructions can be held in SRAMs.

To summarise, the results produced in the experiments are usable in contem-
porary memories provided that suitable variable order is chosen. Moreover, the
method allows scaling the design by adding CAM units.

6 Experiments Evaluation of Experimental Results

109

6.5.2 Lookup Time

As the CAM unit and the unit interpreting FDD nodes are pipelined, the only mea-
sure we need to evaluate in order to obtain the throughput of the classification
unit is the number of instructions executed, in other words, the number of FDD
nodes traversed in the lookup.

The time complexity of FDD traversal is limited from above (see Section 5.6)
by the total number of terms in the filter. In the worst experimental result we
obtained, the filter with 105 terms have been evaluated at most in 28 FDD com-
parisons, i.e., with a constant multiplicative factor 0.27 to the theoretical measure.
It happened in a configuration where the CAMList contained just the minimum
configuration, wider CAMs improved the factor significantly.

It is not trivial to find a part of the software router to compare to the classifica-
tion engine in terms of lookup time. The way of packet classification in the operat-
ing system is completely different from the hardware, moreover, parsing headers
(which is done by a pipelined hardware engine in the accelerator) is distributed
among classification operations. We would not obtain a reasonable comparison
measuring time necessary to process a packet in the kernel. Measuring the overall
performance of the hardware accelerated system would evaluate the system as a
whole, not the classification engine. In any case, the complete hardware design is
not available at the time of writing this work.

To put the measurement onto a real basis, we will give an estimate of through-
put of the hardware classification engine based on properties of the prototype im-
plementation of LUP and compare it to maximum theoretical throughput of a PC
router.

The PC architecture equipped with a 64 bit/66 MHz PCI bus has theoretical
bus throughput 4 Gbps. The highest theoretical traffic that can be handled by such
a router is 4 Gbps, considering the state where all incoming packets are dropped
by the filter.

In the prototype implementation of the hardware design, a CAM search is per-
formed in 160 nsec, a SRAM instruction takes 40 nsec.33

If we omit results obtained for unreasonably narrow CAMs (i.e., for CAMList
setting A), we may take 20 as an estimate of maximum number of FDD steps. Clas-
sifying a packet then takes 800 nsec, thus 1,250,000 packets are classified per sec-
ond.

For 1500 B packets (omitting interpacket gaps), it corresponds to 15 Gbps data
stream. For shortest packets, i.e., 64 B, we obtain a stream of 640 Mbps. While
this seems bad compared to the PC, we must note that the PC would not be able
to handle such a traffic anyway, the number of interrupts necessary is unfeasible.

A reimplementation of the lookup engine with expected SRAM instruction execution time about33

20 nsec is under development.

6 Experiments Evaluation of Experimental Results

110

Compare with [Oppermann, 2006], highly optimised FreeBSD code is capable of
processing up to 750,000 packets per second.

111

7 Conclusion

The goal of this work is the proposal of the method to combine routing, level 3-
to-level 2 address translation, and packet filtering into a single lookup machine
balancing computation between CAM and comparison instructions, and between
the hardware engine and the operating system.

We have proposed the method formally, using a notion of filtering decision
diagrams to represent packet filters. Besides formal evaluation of the method
by means of complexity estimates, measurements based on software simulations
have been performed. The resulting method has been shown feasible to be em-
ployed in the contemporary hardware and efficient to outperform packet classi-
fication possibilities of the PC-based router. The method is highly adaptable to
constrained hardware resources.

During the work on this thesis, especially during experimental evaluation of
the method, the author identified issues and research topics that should be stud-
ied as the future work.

First and foremost, further insight has to be acquired into the relationship of
FDD variable ordering and size of the resulting structure. As we have seen in the
experiments (cf. Table 6.4), small changes in variable order can have enormous
effects on the structure size. Such behaviour is typical for BDD-based structures.
In general, finding an optimal BDD variable ordering is NP-complete. Heuristics
are typically used to guess suitable variable ordering in BDDs. On the other hand,
filtering diagrams are not as general as BDDs, so it is probable that a good method
to determine optimal or near-to-optimal results, or at least a good heuristics could
be found thanks to the limited domain of the problem.

In the experimental simulation environment presented in this work, ARP table
updates are not supported. In order to evaluate the behaviour of the system in a
more realistic environment, this feature should be included. When the target hard-
ware architecture is finished, the overall performance of the whole accelerator will
be also possible to validate.

The process of rewriting the RAF structure can adapt to limited memory sizes;
the expansion into the associative memory can be stopped at any point preserv-
ing correctness of the result (cf. Section 5.8). We have discussed that such ap-
proach is possible. The problem how to choose parameters of the expansions in
order to (1) obtain a feasible solution, i.e., fitting into the memories, (2) maximise
CAM utilisation, and (3) maximise overall performance is left as a future work.
Such method should adapt according to traffic characteristics in order to expand
records that are used most frequently in the current traffic pattern. In order to
recognise the traffic pattern, obtaining some feedback from the classification en-
gine (i.e., usage counters) is necessary. Such approach turns the classification unit
into a “cache with computation possibilities.”

112

Another degree of freedom that can be used to optimise CAM utilisation is the
possibility of choosing various widths of the CAM. Contemporary CAMs support
trading width for number of records stored, typically in discrete steps. This prop-
erty can be used as another parameter both in the process of variable order choice
and adapting to memory size constraints.

The method as we described relies on recomputing the whole structure when
source classification tables are changed. In order to minimise uploading the hard-
ware memories, it is suitable to find possibilities to upgrade only altered parts of
the memories when the structure gets changed.

Finally, the target architecture shall not be understood as given and fixed. Nu-
merous improvements are possible in the hardware design. To give an example,
the choice of variable classes does not have to be fixed for the whole CAM but it
can depend on some properties of packets, e.g., protocol. Such changes may natu-
rally modify our initial assumptions about the target architecture.

113

Bibliography

Al-Shaer, E. and Hamed, H. (2004). Discovery of policy anomalies in distribut-
ed firewalls. In Proceedings of the 23rd Conference IEEE Communications Society
(INFOCOM 2004).

Andersen, D. G., Balakrishnan, H., Kaashoek, M. F. and Morris, R. (2001). Re-
silient Overlay Networks. In Symposium on Operating Systems Principles,
pages 131–145.

Andersen, H. R. (1998a). An Introduction to Binary Decision Diagrams. Depart-
ment of Information Technology, Technical University of Denmark, Lyngby,
http://www.it.dtu.dk/~hra/bdd97.ps.

Andersson, A. and Nilsson, S. (1993). Improved Behaviour of Tries by Adaptive
Branching. Information Processing Letters, 46:295–300.

Andersson, A. and Nilsson, S. (1994). Faster Searching in Tries and Quadtrees—
An Analysis of Level Compression. In Proceedings of Second Annual European
Symposium on Algorithms, pages 82–93.

Andersson, A. and Nilsson, S. (1995). Efficient Implementation of Suffix Trees.
Software—Practice and Experience, 25(2):129–141.

Antoš, D. (2001). PatLib, Pattern Manipulating Library. Master’s thesis, Faculty of
Informatics.

Antoš, D., Kořenek, J., Minaříková, K. and Řehák, V. (2003). Packet header match-
ing in Combo6 IPv6 router. Technical Report, CESNET, z. s. p. o..

Antoš, D. and Kořenek, J. (2004). String Matching for IPv6 Routers. In Boas,
P. V. E., Pokorný, J., Bielikova, M. and Štuller, J., editors, SOFSEM 2004,
pages 205–210, Měřín, Czech Republic. MATFYZPRESS, Prague. ISBN 80-
86732-19-3.

Antoš, D., Řehák, V. and Kořenek, J. (2004). Hardware Router’s Lookup Machine
and its Formal Verification. In ICN’2004 Conference Proceedings, pages 1002–
1007, Gosier, Guadeloupe, French Caribbean. University of Haute Alsace,
Colmar, France. ISBN 0-86341-325-0.

Attar, A. (2002). Performance Characteristics of BDD-Based Packet Filters. Techni-
cal Report, University of the Witwatersrand, Johannesburg.

Baboescu, F., Singh, S. and Varghese, G. (2003). Packet Classification for Core
Routers: Is there an alternative to CAMs?. In Proceedings of the IEEE INFO-
COM. IEEE Communications Society.

Baboescu, F. and Varghese, G. (2001). Scalable packet classification. In Proceedings
of the 2001 conference on Applications, technologies, architectures, and protocols for
computer communications, pages 199–210. SIGCOMM: ACM, ACM Press, New
York, NY, USA. ISBN 1-58113-411-8.

Bibliography

114

Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D. and Macii, E. et al. (1993).
Algebraic Decision Diagrams and Their Applications. In IEEE/ACM Interna-
tional Conference on CAD, pages 188–191, Santa Clara, California, USA. IEEE
Computer Society Press.

Bollig, B. and Wegener, I. (1996). Improving the Variable Ordering of OBDDs Is
NP-Complete. IEEE Transactions on Computers, 45(9):993–1002. ISSN 0018-
9340.

Brace, K. S., Rudell, R. L. and Bryant, R. E. (1991). Efficient implementation of a
BDD package. In Proceedings of the 27th ACM/IEEE conference on Design au-
tomation, pages 40–45, Orlando, Florida, USA. IEEE/ACM, ACM Press, New
York, NY, USA. ISBN 0-89791-363-9.

Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691. ISSN 0018-9340.

Bryant, R. E. (1992). Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams. ACM Computing Surveys, 24(3):293–318.

Bryant, R. E. (1995). Binary Decision Diagrams and Beyond: Enabling Technolo-
gies for Formal Verification. In IEEE/ACM International Conference on Com-
puter Aided Design, ICCAD, San Jose, CA, pages 236–243. IEEE CS Press, Los
Alamitos.

Cheswick, W. R., Bellovin, S. M. and Rubin, A. D. (2003). Firewalls and Internet
Security: Repelling the Wily Hacker. Addison-Wesley Professional, Second edi-
tion. ISBN 020163466X.

Cheung, G. and McCanne, S. (1999). Optimal Routing Table Design for IP Address
Lookups Under Memory Constraints. In INFOCOM (3), pages 1437–1444.

Christiansen, M. and Fleury, E. (2004). An Interval Decision Diagram Based Fire-
wall. In Proceedings of 3rd IEEE International Conference on Networking (ICN ’04).
University of Haute Alsace, Colmar, France. ISBN 0-86341-325-0.

Christiansen, M. and Fleury, E. (2004). An MTIDD Based Firewall: Using decision
diagrams for packet filtering. Telecommunications Systems, 27(2–4):297–319.

Cisco Systems, I. (2005). Cisco IOS Software Configuration. http://www.cisco.
com/univercd/cc/td/doc/product/software/.

Claffy, K. (1999). Internet measurement and data analysis: topology, workload,
performance and routing statistics. http://traffic.caida.org/Reading/Pa-
pers/Nae/.

Compact Filter. (2005). Compact Filter: An IDD Based Packet Filter for Linux.
http://www.cs.aau.dk/~mixxel/cf/.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2001). Introduction to
Algorithms. MIT Press, Second edition. ISBN 0-262-03293-7.

Crescenzi, P., Dardini, L. and Grossi, R. (1999a). IP Address Lookup Made Fast
and Simple. Technical Report, Universita di Pisa, Corso Italia 40, 56125 Pisa,
Italy.

Eatherton, W. N. (1999). Hardware-Based Internet Protocol Prefix Lookups. Mas-
ter’s thesis, Washington University in St. Louis.

Bibliography

115

Eronen, P. and Zitting, J. (2001). An expert system for analyzing firewall rules. In
Proceedings of the 6th Nordic Workshop on Secure IT Systems, pages 100–107.

Feamster, N., Andersen, D. G., Balakrishnan, H. and Kaashoek, M. F. (2003). Mea-
suring the Effects of Internet Path Faults on Reactive Routing. In Proc. of
ACM SIGMETRICS 2003.

Feldmann, A. and Muthukrishnan, S. (2000). Tradeoffs for Packet Classification.
In Proceedings of INFOCOM, pages 1193–1202. IEEE.

Frantzen, L. (2003). Approaches for Analysing and Comparing Packet Filtering in
Firewalls. Master’s thesis, Technical University of Berlin.

FreeBSD. (2005). FreeBSD. http://www.freebsd.org.
Gupta, P. and McKeown, N. (1999). Packet classification on multiple fields. In

Proceedings of the conference on Applications, technologies, architectures, and pro-
tocols for computer communication, pages 147–160, Cambridge, Massachusetts,
United States. ACM Press, New York, NY, USA. ISBN 1-58113-135-6.

Gupta, P. and McKeown, N. (2000). Classifying packets with hierarchical intelli-
gent cuttings. IEEE Micro, 20(1):34–41.

Hažmuk, I. (2005). Unified Header structure. Liberouter [Liberouter, 2005] CVS,
file liberouter/vhdl_design/units/hfe/doc/UH-structure.txt.

Hazelhurst, S., Attar, A. and Sinnappan, R. (2000). Algorithms for Improving the
Dependability of Firewall and Filter Rule Lists. In DSN ’00: Proceedings of
the 2000 International Conference on Dependable Systems and Networks (formerly
FTCS-30 and DCCA-8), pages 576–585, Washington, DC, USA. IEEE Comput-
er Society. ISBN 0-7695-0707-7.

Hazelhurst, S., Fatti, A. and Henwood, A. (1998). Binary Decision Diagram Repre-
sentations of Firewall and Router Access Lists. Technical Report, University
of the Witwatersrand, Johannesburg, South Africa.

Höfer, F. (2003). Packet Analysis for IPv6 Router Implemented by a PCI Accelera-
tion card. Technical Report, CESNET, z. s. p. o..

IPF. (2005a). IP Filter. http://coombs.anu.edu.au/~avalon/.
IPFIREWALL. (2005). Freebsd ipfirewall. FreeBSD ipfw(8) manual page.
Juniper Networks, Inc. (2005a). JUNOS Internet Software for J-series, M-series,

and T-series Routing Platforms: Policy Framework Configuration Guide.
http://www.juniper.net/techpubs/software/junos/junos71/index.html.

Karn, P. (2005). KA9Q routing package. http://www.ka9q.net/code/ka9qnos/.
Knuth, D. E. (1998). Sorting and Searching, volume 3 of The Art of Computer Pro-

gramming. Addison-Wesley, Second edition.
Kuhns, F., DeHart, J., Kantawala, A., Keller, R. and Lockwood, J. et al. (2002).

Design of a high performance dynamically extensible router. In Proceedings of
DARPA Active Networks Conference and Exhibition.

Kurose, J. E. and Ross, K. W. (2001). Computer Networking—A Top-down Ap-
proach Featuring the Internet. Addison-Wesley, Reading, Massachusetts, Sec-
ond edition.

Bibliography

116

Lakshman, T. V. and Stiliadis, D. (1998). High-Speed Policy-Based Packet For-
warding Using Efficient Multi-Dimensional Range Matching. In Proceedings
of SIGCOMM ’98, pages 203–214. IEEE/ACM.

Liang, F. M. (1983). Word Hy-phen-a-tion by Com-put-er. PhD thesis, Department of
Computer Science, Stanford University, Stanford, CA 94305.

Liberouter (2005). Liberouter Project WWW Page. http://www.liberouter.org.
Lidl, K. J., Lidl, D. G. and Borman, P. R. (2002). Flexible Packet Filtering: Providing

a Rich Toolbox. In Proceedings of the BSDCon ’02 Conference on File and Storage
Technologies, pages 99–110, Cathedral Hill Hotel, San Francisco, California,
USA. USENIX.

Lu, H. (2004). Improved Trie Partitioning for Cooler TCAMs. In IASTED Interna-
tional Conference on Advances in Computer Science and Technology (ACST 2004).

Malkin, G. (1995). RFC 1868: ARP Extension—UNARP. Status: EXPERIMENTAL..
Mayer, A., Wool, A. and Ziskind, E. (2000). Fang: A Firewall Analysis Engine. In

IEEE Symposium on Security and Privacy, pages 177–189, Berkeley, California.
Micheli, G. D., Ernst, R. and Wolf, W., editors (2002). Readings in Hardware/Software

Co-design Morgan Kaufmann. ISBN 1-55860-702-1.
Minaříková, K. (2005). Computing Look-up Programs of Routing Accelerator.

Master’s thesis, Faculty of Informatics, Masaryk University Brno.
Minaříková, K. and Höfer, F. (2005). LUP Instruction Set. Liberouter [Liberouter,

2005] CVS, file liberouter/vhdl_design/units/lup/prog/nsim/instruction
_m.def.

Moestedt, A. and Sjödin, P. (1998). IP Address Lookup in Hardware for High-
Speed Routing. In Proc. IEEE Hot Interconnects 6 Symposium, pages 31–39,
Stanford, California, USA.

Mogul, J. C. (1984). RFC 917: Internet subnets.
Mogul, J. C. and Postel, J. (1985). RFC 950: Internet Standard Subnetting Proce-

dure. Updates RFC0792.
NetBSD. (2005). NetBSD. http://www.netbsd.org.
netfilter. (2005a). The netfilter/iptables project. http://www.netfilter.org/.
Nilsson, S. and Karlsson, G. (1999). IP-Address Lookup Using LC-Tries. In IEEE

Journal on Selected Areas in Communications, pages 1083–1092.
Novotný, J., Fučík, O. and Antoš, D. (2003b). Liberouter—New Way in IPv6 Rout-

ers. In ICETA 2003 2nd International Conference Proceedings, pages 153–158.
elfa, Košice, elfa, Košice.

Novotný, J., Fučík, O. and Antoš, D. (2003a). Project of IPv6 Router with FPGA
Hardware Accelerator. In Cheung, P. Y., Constantinides, G. A. and de Sousa,
J. T., editors, Field-Programmable Logic and Applications, 13th International Con-
ference FPL 2003, pages 964–967. Springer Verlag.

Novotný, J., Fučík, O. and Kokotek, R. (2002). Schematics and PCB of COMBO6
card. Technical Report, CESNET, z. s. p. o..

OpenBSD. (2005). OpenBSD. http://www.openbsd.org.

Bibliography

117

Oppermann, A. (2006). TCP/IP Cleanup and Optimizations. http://people.free-
bsd.org/~andre/tcpoptimization.html; Performance improvements for the
if_em driver: http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/dev/em/if
_em.c?rev=1.98&content-type=text/x-cvsweb-markup.

Pao, D., Liu, C., Wu, A., Yeung, L. and Chan, K. S. (2002). Efficient Hardware Ar-
chitecture for Fast IP Address Lookup. In IEEE INFOCOM 2002, pages 555–
561.

PF. (2005a). PF: The OpenBSD Packet Filter. http://www.openbsd.org/faq/pf/.
Plummer, D. C. (1982). RFC 826: Ethernet Address Resolution Protocol: Or con-

verting network protocol addresses to 48.bit Ethernet address for transmis-
sion on Ethernet hardware.

Rizzo, L. (2004a). New arp code snapshot for review. Mailing list Free-
BSD-current, http://lists.freebsd.org/pipermail/freebsd-current/2004-April
/026380.html.

Russel, R. (2005a). Linux IP Firewalling Chains. http://people.netfilter.org/
~rusty/ipchains/.

Sahni, S. and Kim, K. S. (2003). Efficient Construction of Multibit Tries for IP
Lookup. IEEE/ACM Transactions on Networking (TON), 11(4):650–662. ISSN
1063-6692.

Sahni, S. and Kim, K. S. (2004). An O(log n) Dynamic Router-Table Design. IEEE
Transactions on Computers, 53(3):351–363.

Singh, S., Baboescu, F., Varghese, G. and Wang, J. (2003). Packet Classification
Using Multidimensional Cutting. In SIGCOMM’03: Proceedings of the Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication
Conference, pages 213–224, Karlsruhe, Germany. ACM Press, New York, NY,
USA.

Sinnappan, R. and Hazelhurst, S. (2001). A Reconfigurable Approach to Pack-
et Filtering. In Brebner, G. J. and Woods, R., editors, Proceedings of the 11th
International Conference on Field-Programmable Logic and Applications, number
2147 in LNCS, pages 638–642, Belfast, Northern Ireland, UK. Springer Verlag.
ISBN 3-540-42499-7.

Sinnappan, R. A. (2001). A Reconfigurable Approach to TCP/IP Packet Filter-
ing. Master’s thesis, Faculty of Science, University of the Witwatersrand,
Johannesburg.

Sklower, K. (1993). A tree-based routing table for Berkeley Unix. Technical Report,
University of California, Berkeley.

Spitznagel, E., Taylor, D. and Turner, J. (2003). Packet Classification Using Extend-
ed TCAMs. In Proceedings of ICNP.

Srinivasan, V., Suri, S. and Varghese, G. (1999). Packet classification using tuple
space search. In SIGCOMM ’99: Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer communication, pages 135–
146, New York, NY, USA. ACM Press. ISBN 1-58113-135-6.

118

Srinivasan, V. and Varghese, G. (1999). Fast Address Lookups using Controlled
Prefix Expansion. Transactions on Computer Systems, 1(17):1–40.

Srinivasan, V., Varghese, G., Suri, S. and Waldvoge, M. (1998). Fast and Scalable
Layer Four Switching. In Proceedings of ACM SIGCOMM ’98, pages 191–202.

Strehl, K. and Thiele, L. (1998b). Symbolic model checking of process networks us-
ing interval diagram techniques. In Proceedings of the 1998 IEEE/ACM interna-
tional conference on Computer-aided design, pages 686–692, San Jose, California,
United States. ACM Press, New York, NY, USA. ISBN 1-58113-008-2.

Taylor, D. E. (2004). Survey & Taxonomy of Packet Classification Techniques.
Technical Report, Washington University in St. Louis.

Taylor, D. E., Lockwood, J. W., Sproull, T. S., Turner, J. S. and Parlour, D. B. (2002a).
Scalable IP Lookup for Programmable Routers. In IEEE INFOCOM 2002: 21st
Annual Joint Conference of the IEEE Computer and Communications Societies.

Taylor, D. E. and Spitznagel, E. W. (2005). On using content addressable mem-
ory for packet classification. Technical Report, Washington University in
St. Louis.

Taylor, D. E. and Turner, J. S. (2005). Scalable Packet Classification using Distribut-
ed Crossproducting of Field Labels. In IEEE INFOCOM 2005.

Waldvogel, M. (2000). Multi-Dimensional Prefix Matching Using Line Search. In
Proceedings of IEEE Local Computer Networks,, pages 200–207, Tampa, FL, USA.

Waldvogel, M., Varghese, G., Turner, J. and Plattner, B. (1997). Scalable High
Speed IP Routing Lookups. In Proceedings SIGCOMM 97.

Waldvogel, M., Varghese, G., Turner, J. and Plattner, B. (2001). Scalable High-
Speed Prefix Matching. ACM Transactions on Computer Systems, 19(4):440–482.

Wang, M. (2005). A Growth-Based Address Allocation Scheme for IPv6. In Bouta-
ba, R., Almeroth, K. C., Puigjaner, R., Shen, S. X. and Black, J. P., editors,
Proceedings of Networking 2005, number 3462 in Lecture Notes in Computer
Science, pages 671–783. Springer Verlag. ISBN 3-540-25809-4.

Woo, T. Y. (2000). A Modular Approach to Packet Classification: Algorithms and
Results. In Proceedings of the IEEE INFOCOM, pages 1213–1222, Tel Aviv, Is-
rael. IEEE.

Zane, F., Narlikar, G. and Basu, A. (2003). CoolCAMs: Power-Efficient TCAMs for
Forwarding Engines. In Proceedings of IEEE INFOCOM 2003.

119

A Structure of the Unified Header

Unified Header is a structure containing header fields on fixed positions. It serves
to allow the lookup to abstract from actual structure of the packet. The structure
has been proposed by Ivo Hažmuk, the complete description (including physical
allocation of Unified Header registers) is available in CVS file [Hažmuk, 2005]. We
present a brief overview here.

of bits description
16 L2 flag register (L2_REG, see below)
16 L3 flag register (L3_REG, see below)
48 DSTMAC—destination MAC address
48 SRCMAC—source MAC address

4 802.1p priority
12 802.1q VLAN tag

4 SRC iface ID (coded as a bitmap)
128 SRC IP address (IPv4 uses 32 LSB)
128 DST IP address (IPv4 uses 32 LSB)

16 SRC port/ICMP options (only for TCP/UDP/ICMP)
16 DST port (only for TCP/UDP)

128 INTER_ADDR Intermediate IP address (if Routing Header and/or IPv4
Source Route option is present)

16 PLEN—total packet length
8 PROTOCOL—Protocol number—/etc/services (aligned to 16 bits)

16 DRAM—allocation block number in DRAM (refers to the packet body)

L3_REG

bits description
0 ARP—Ethernet Type 0x0806
1 TCP (for IPv4/IPv6)

Ethernet (for ARP)
2 UDP (for IPv4/IPv6)

IP (for ARP)
3 ICMP/ICMPv6 (for IPv4/IPv6)

unused for ARP
4 Destination Options header for IPv6

IPv4 fragment
unused for ARP

A Structure of the Unified Header

120

5 Encapsulation Security Protocol header (ESP) for IPv4/IPv6
unused for ARP

6 Authentication header (AH) present (for IPv4/IPv6)
unused for ARP

7 Routing header for IPv6
unused for ARP and IPv4

8 Hop-by-Hop Options header for IPv6
unused for ARP and IPv4

9 INTER_ADDR is filled for IPv6
unused for ARP and IPv4

10 Hop Limit/TTL
unused for ARP

11 nasty protocol/option (unrecognised, should be processed by the operating
system) for IPv4/IPv6
unused for ARP

12 unknown protocol/option
13 bad packet
14 reserved
15 1—IPv6; 0—IPv4

unused for ARP

Meaning of most of fields of the L3 attribute register L3_REG depends on protocol
type. Meaning of bits 1 and 2 depends on bit 0 (i.e., if the packet is ARP). Meaning
of bits 4–10 depends on IP version denoted by bit 15.

L2_REG

bits description
0 CRC 0—good, 1—bad
1 length 0—OK, 1—longer than MTU
2 RUNT 0—OK, 1—shorter than 64 bytes
3 SRCMAC belonging to the interface (0)
4 unknown Ethernet protocol
5 802.3 (0) or other protocol (1)
6 BAD_DSTMAC: 0—DSTMAC is ready, 1—bad recipient ditto
7 NOTMYMAC: 0—Unicast packet is for me, 1—another recipient
8 OTHER_ERR: 0—good, 1—other unspecified error
9 802.1Q

10 MPLS unicast
11–15 reserved

121

B Detailed Experimental Results

This appendix covers detailed results of measurements presented in Chapter 6.

B.1 Variable Filter Length

See Section 6.4.1.4 for explanation of the results presented here.

B.1.1 Data Set 1

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 6

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 14

B Detailed Experimental Results Variable Filter Length

122

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 22

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 30

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 38

B Detailed Experimental Results Variable Filter Length

123

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 46

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 54

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 56

B Detailed Experimental Results Variable Filter Length

124

B.1.2 Data Set 2

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 4

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 9

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 14

B Detailed Experimental Results Variable Filter Length

125

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 19

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 24

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 29

B Detailed Experimental Results Variable Filter Length

126

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 34

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 35

B.1.3 Data Set 3

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 4

B Detailed Experimental Results Variable Filter Length

127

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 9

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 14

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 19

B Detailed Experimental Results Variable Filter Length

128

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 24

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 29

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 34

B Detailed Experimental Results Effects of CAMList

129

0 5 10 15 20
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

Filter length 35

B.2 Effects of CAMList

See Section 6.4.3 for explanation of results presented here.

B.2.1 Data Set 1

0 5 10 15 20 25
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

CAMList A

B Detailed Experimental Results Effects of CAMList

130

0 5 10 15 20 25
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

CAMList B

0 5 10 15 20 25
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

CAMList C

0 5 10 15 20 25
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

CAMList D

B Detailed Experimental Results Effects of CAMList

131

0 5 10 15 20 25
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

CAMList E

B.2.2 Data Set 2

0 5 10 15 20 25
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

CAMList A

0 5 10 15 20 25
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

CAMList B

B Detailed Experimental Results Effects of CAMList

132

0 5 10 15 20 25
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

CAMList C

0 5 10 15 20 25
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

CAMList D

0 5 10 15 20 25
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

CAMList E

B Detailed Experimental Results Effects of CAMList

133

B.2.3 Data Set 3

0 5 10 15 20 25
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

CAMList A

0 5 10 15 20 25
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

CAMList B

0 5 10 15 20 25
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

CAMList C

134

0 5 10 15 20 25
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

CAMList D

0 5 10 15 20 25
FDD depths

1

10

100

1000

10000

100000

Pa
ck

et
s

CAMList E

