
User Empowered Virtual Multicast for Multimedia
Communication

Eva Hladká

Laboratory of Advanced Network Technologies

Faculty of Informatics,

Masaryk University Brno,

Botanická 68a, Brno 602 00, Czech Republic

Email: eva@fi.muni.cz Phone: +420 549 493 535

Petr Holub

Faculty of Informatics and

Institute of Computer Science

Masaryk University Brno,

Botanická 68a, Brno 602 00, Czech Republic

Email: hopet@ics.muni.cz Phone: +420 549 493 944

Jiřı́ Denemark

Labor. of Advanced Network Technologies

Faculty of Informatics,

Masaryk University Brno,

Botanická 68a, Brno 602 00, Czech Republic

Email: jirka@ics.muni.cz

Abstract— We introduce concept of user empowered UDP
packet reflectors to create virtual multicasting environment as

an overlay on top of current unicast networks. The virtual mul-
ticast is used as a bottom layer for secure and efficient collab-
orative environments. The end-users’ ability to fully control
this environment—in a way similar to peer to peer networks—
is the primary advantage of our approach. Other interesting
features that are possible only in virtual multicast environment
are also discussed in this paper.

Index Terms— virtual multicast, UDP packet reflector, user
empowered approach, modular architecture

I. INTRODUCTION

Multicast is the “natural” solution for a group commu-

nication [1]. Multicast communication can be character-

ized by the following statement: “The same data are trans-

ferred at most once on any particular link”. This implies

large (“infinity”) scalability, but imposes non-trivial require-

ments on the network as all the network nodes must support

it in a consistent way. Despite continuous effort only very

small fraction of places on Internet have reliable native mul-

ticast connectivity. While the radio, television, and other

mostly one-way broadcasting systems are practically impos-

sible to be deployed on large scale without native multicast

support, the collaborative environment usually connects bi-

directionally few places only and “infinity” scalability is not

such pressing issue. The communicating groups have usu-

ally at most 20 sites connected while larger groups need very

precise orchestration and moderation. All the practically

used multicast protocols have also other disadvantages: it

is near to impossible to take care of quality of service re-

quirements for the whole multicast group, it is very difficult

This research is supported by a research intent “High Speed Research
Network and its New Applications” (MSM000000001).

to provide secured environment without a shared key, and

there is no easy support for accounting.
These problems may be overcome through multicast con-

nectivity simulation, where active nodes have a role of re-

flectors (“mirrors”), that replicate all traffic passing through

them in a controlled way. In such environment multicast

videoconferencing clients can be used with ease while keep-

ing the advantages of unicast point-to-point communica-

tion lines—thus creating virtual multicast environment (this

technology is used e. g. in VRVS [2] or AccessGrid [3]).

The reflectors can even transform the incoming traffic and

can be directly controlled by the end users. These mirrors

play a role of multicast join-points, allowing clients to con-

nect (and drop out) without any undesired influence on the

rest of the group.
We propose reflector architecture based on active router

architecture [4]. This architecture can be used for creation of

ad hoc overlay networks, where both mirrors and the over-

lay network creation is administered directly by end users.

The behavior of each individual mirror can be independently

controlled, including the security environment. The secu-

rity context may be individualized for each client, using any

authentication scheme, including PKI, Kerberos or shared

keys. While reflector technology is only partially scalable it

is the most efficient infrastructure for groups with no more

than tens of clients. The main advantage is flexibility, user

empowered-ness, and independence on any specific network

features except for simple unicast routing. All the “advanced

features” are provided by higher, user controlled layer. Any

user group can start its own mirror and only unicast con-

nectivity is required from any client to the mirror. Two or

more mirrors may be combined to provide a true overlay

network. While data routing and replicating are the basic

functions, many more services can be provided within this



framework. Varying demands of different users’ groups and

even specific demands of individual users within a group

can be handled by specific extensions (modules) to the basic

mirror program in the active network framework. Few ex-

amples of already implemented features are: full logging

and data recording, data encryption and decryption, syn-

chronization of streams, authentication, authorization and

accounting, and stream traffic shaping.

II. REFLECTOR ARCHITECTURE

The design of a reflector must be flexible enough to al-

low implementation of required features and leaving space

for easy extensions for new features. This leads to a design

that is very similar to our active router architecture [4] mod-

ified to work entirely within the user space. Users without

administrator privileges are thus able to run reflector on any

machine they have access to. The reflector architecture is

shown in Fig. 1.

A. Data routing and processing

Data routing and processing part of the reflector com-

prises network listeners, shared memory, packet classi-

fier, processor scheduler, number of processors, and packet

scheduler/sender.

Network listeners are bound to one UDP port each. When

packet arrives to the listener it places the packet into shared

memory and adds reference to a to-be-processed queue. The

packet classifier then reads packets from that queue and de-

termines a path of the data through the processor modules. It

also checks with routing AAA module whether packet is al-

lowed or not (in the later case it simply drops that packet and

creates event that can be possibly logged). Zero-copy pro-

cessing is used in all simple processors (packet filters), min-

imizing processing overhead (and thus packet delay). Only

the most complex modules may require processing that is

impossible without use of packet copies.

The session management module follows the processors

and fills the distribution list of the target addresses. The fill-

ing step can be omitted if data passed through a special pro-

cessor that filled the distribution list structure and marked

data attribute appropriately (this allows client-specific pro-

cessing). Processor can also poll session management mod-

ule to obtain up to date list of clients for specified session.

Session management module also takes care of adding new

clients to the session as well as removing inactive (stale)

clients. When new client sends packets for the first time,

session management module adds client to the distribution

list (data from forbidden client has already been dropped by

packet classifier). Information about the last activity of a

client is also maintained by the session module and is used

for pruning stale clients periodically. Even when distribu-

tion list is not filled by the session management module,

packets must pass through it to allow addition of new clients

and removal of stale ones.

When the packet targets are determined by the router pro-

cessor a reference to the packet is put into the to-be-sent

queue. Then the packet scheduler/sender picks up packets

from that queue, schedules them for transmission, and fi-

nally sends them to the network. Per client packet schedul-

ing can also be used for e. g. client specific traffic shaping.

The processor scheduler is not only responsible for the

processors scheduling but it also takes care of start-up and

(possibly forced) shutdown of processors which can be con-

trolled via administrative interface of the reflector. It checks

resource limits with routing AAA module while scheduling

and provides back some statistics for accounting purposes.

B. Administrative part of the reflector

Communication with the reflector from the administrative

point of view is provided using messaging interfaces, man-

agement module, and administrative AAA module of the re-

flector. Commands for the management module are written

in a specific message language.

Messaging interface is generic entity, which can be in-

stantiated as e. g. RPC, SOAP over HTTP, plain HTTP in-

terface with SSL/TLS or GSI support, or simple TCP con-

nection bound to loop-back interface of the machine running

the reflector. Each of these interfaces unwraps the message

if necessary and passes it to the management module.

Management module checks validity of the message and

its authenticity and authorization status, querying the admin-

istrative AAA module, which is also responsible for the pro-

cessing of accounting information of the accepted messages.

Availability of sufficient resources to process accepted mes-

sage is checked with resource management module and the

message is passed to the appropriate module(s) afterwards.

Completion status is returned back to the management mod-

ule, which notifies the administrative AAA module to close

the accounting. If a failure occurs, its description is stored

via the administrative AAA module, an error that can be

logged is generated, and an error message is simultaneously

sent back the client via messaging interface the client is con-

nected to.

The same mechanism can be used for logging purposes.

One or more messaging interfaces may be opened with the

LOGGING flag set and such messaging interfaces receive all

events created within the reflector via the management mod-

ule. The way how to receive logging information through

some messaging interface, which doesn’t have the LOG-

GING flag set, is to send a request asking for logging in-

formation via this interface.

A message language for communication with the man-

agement module is called Reflector Administration Protocol

(RAP) [5]. It is a text-based request/response protocol that

uses US-ASCII character set. Lines are delimited by char-

acter pair CR and LF (0x13 and 0x10). Protocol message

can be either user’s request to the reflector or response of

the reflector to the user. One request can be followed by

multiple responses. Protocol is designed as soft-state, i. e.

connection is closed after certain period of client inactivity.

Keep-alive messages have to be sent if the client wants to

maintain connection and has no requests to send.



packet
classifier

processor
scheduler

routing
AAA

session
management

resource management

Reflector Kernel

administrative AAA

management

session
management

packet
processor

Processor 1

session
management

packet
processor

Processor n

shared

memory

network
listener 1

network
listener n

packet scheduler

/sender

messaging
interface 1

messaging
interface n

data flow control information

Fig. 1. Reflector Architecture

Each message comprises message headers and message

body. In case of request, the headers contain

• specification of method (that is an actual command for

the reflector) and method specific headers

• target module reference (RAP contains a module ad-

dressing schema enabling to pass requests to specific

modules),

• protocol version identification, length of the message

body, possible request to process the request in block-

ing manner, and other auxiliary information

Message body contains method specific information if

needed. Methods (or commands) can be divided into two

groups: general reflector methods and extending module

specific methods. Group of general methods covers methods

for requesting various information on status of the reflector

and its modules (either in interactive way or in form of sub-

scription for logging information), commands for manipu-

lating both routing and administrative access control lists

as well as administrative user database, and commands for

controlling modules (starting, stopping, and restarting mod-

ules).

There are several response classes used by reflector to re-

ply to client’s request: 100 (for informational and logging

messages), 200 (for successful completion of user request

with message body containing actual response data), 400

(for client request errors), and 500 (for server-side error).

Complete definition of RAP version 1.0 including formal

definition using ABNF [6], detailed protocol description,

and example communication using RAP can be found in [5].

III. ADVANCED REFLECTOR FEATURES

The basic function of the reflector is retransmission of

received data to one or more listeners. This can be easily

extended to support other useful functions. The reflector

replicates all the traffic coming through specified port to all

the clients connected to that port. Clients do not interact

in advance—they just connect to the reflector to automati-

cally receive all the traffic sent to the reflector and also all

the client traffic is automatically distributed by the reflec-

tor. The reflector security (per port or per client) policy may

change this behavior and forbid some clients from listening

or sending data.

a) Tunneling and scalability: The scalability of the

reflector based communication can be increased using tun-

neling between the reflectors. Possible tunnel configurations

are:

• full-mesh tunneling – Each reflector has addresses of its

peers and sends data received from directly connected

clients to all the peer reflectors and accepts data from

all the peer reflectors and distributes it to all directly

connected clients. This is the least efficient way with

respect to scalability but has the simplest setup.

• static tunneling – Routing among reflectors is done by

manually pre-configured static way. Such tunneling is



used for MultiSession Bridge in AccessGrid[7]. This

can be efficient for long-lived network of reflectors

with infrequent changes. It is not suitable for networks

created in ad hoc mode. When properly managed, this

is the most efficient configuration.

• dynamic tunneling and routing – Mimics the behav-

ior of routers and may use very specific routing al-

gorithms (even multi-criteria). The simpler configura-

tions may use distance vector routing algorithms used

in mrouted (on the MBone) or even algorithms from

peer-to-peer networks might be used (e. g. an algorithm

developed in Pastry project [8]). This option is the most

suitable for ad hoc networks of reflectors and may be

the most efficient for dynamic environments.

Both static and dynamic configurations are suitable for net-

works with some low bandwidth or high latency lines since

they can be configured to bypass such links.

b) Logging: Following events are examples of events

generated within the reflector either as a result of data trans-

mission or reacting to managerial decisions: start-up and

shutdown of the reflector, beginning and end of data trans-

mission, start and stop of data recording, users’ login and

log-off times and login failures, non-authenticated requests

to join a group, program errors. These events are sent to

all the messaging interfaces subscribed for logging informa-

tion, which store them into disk files or pass them on e. g.

the system syslog interface or to some external monitor-

ing tools.

c) Stream transcoding: A specific module can act as

a multimedia stream transcoder. This is usually used when

some client is connected via the low bandwidth link. As

the transcoding consumes rather lot of processing power, a

specific reflector—the gateway—may be set up at the be-

ginning of the low bandwidth link and connected to the

nearest reflector using the tunneling capability and thus en-

ables clients connected via low bandwidth links to partici-

pate without influencing clients connected using fast links.

Another situation in which the transcoding feature is use-

ful is when media stream is produced and transferred in for-

mat that is not acceptable for the some client(s).

d) Video stream composition: In some circumstances,

like different quality of links used by participants, large

groups resulting in too many windows at client sites, in-

sufficient processing power at client sites to decode large

number of simultaneous streams etc., it may be advanta-

geous to down-sample video streams and compose several

of them into one stream directly on the reflector (provided

it has sufficient memory and processing power). The first

version of such a processor is described in [9] and it has

already been adapted to fit into the new architecture. This

processor is based on the vic tool and support exactly the

same set of video formats. Up to four video streams can be

composed into one output stream. Input video formats are

auto-detected, the processor is able to work with different

formats simultaneously. The output video format is config-

urable by the end user.

e) Recording: The centralized data recording facility

has many advantages over much simpler features of most

videoconferencing clients. It may be a trusted neutral agent

(no local editing of content), it can guarantee to store all data

actually transmitted (in contrast to local client which may

experience some local data loss), it may be more efficient

(just one copy of the data is created), and it provides record-

ing capabilities independent of whether the client software

has recording capabilities or not. The recording processor

within the reflector is controlled by end-users, stored data

can be easily used to re-play the communication. Storage of

all the data transmitted allows a synchronized re-play of not

only audio or video but also of shared workspace modifica-

tions, too.
f) Synchronization: Several independent UDP

streams may be synchronized using the appropriate proces-

sor. It inspects timestamps and delays or reorders packets

within a specified time windows so the resulting outbound

streams are fully synchronized. It uses timestamps in

RTP packets and is able to work with independent time

references (“zero time”) and increments for each stream

(even different streams from the same source computer can

use different time references [10], [11]). The information

needed for converting between real (absolute) time and

relative RTP time is taken from RTCP packets. This

requires sending computers to have their real time clocks

synchronized e. g. using NTP protocol.

This synchronization feature can be used e. g. to send 3D

video in two streams for each eye separately synchronously

over best effort network. Such transmission allows to use

more demanding video processing compared to sending it

in one stream since the processing can be distributed among

two or even more machines provided they have their real

time synchronized properly.

A preliminary implementation, which uses dedicated re-

flector lacking our new modular architecture, has been de-

scribed in [12].
g) Traffic Shaping: The traffic shaping processor sup-

ports among other: bandwidth limiting, delaying, deliberate

packet loss, and packet duplication (on the same stream).

The last two features are used usually for debugging pur-

poses or for simulation non-ideal network conditions. De-

laying is used to increase fairness among videoconferencing

partners in unfair conditions (where one or more partners

have substantially larger delays).
h) Raw Data Dumping: While events from manage-

ment module are stored via the logging interfaces, the re-

flector supports also raw data dumps of all incoming packets

(including those rejected for authentication or authorization

reasons). The reflector, running in the user space, does not

rely on the tcpdump (requiring root privileges) and in the

dumping mode it simply copies all data on inbound inter-

faces into a file for later analysis.

IV. SECURITY IN CONTEXT OF THE REFLECTOR

The reflector is a program started by an ordinary user—

who thus becomes primary reflector administrator—and it



runs under his or her identity. As this user grants some priv-

ileges to partners within the group, the reflector must pro-

tect user from malicious behavior of third parties. This is

done via authentication and authorization mechanisms that

are part of the administrative AAA module. In various sce-

narios (e. g. military or bioinformatics) the actual data com-

municated among partners must be protected as well.

All the administration is done via secure messaging chan-

nels (e. g. SSL/TLS secured HTTP). User can authenticate

using login and password or via some authentication cre-

dential (e. g. Kerberos ticket or X.509 certificate). The au-

thorization is done using ACL (access control list) and is

performed per command (similar to the TACACS authoriza-

tion mechanism). The reflector administrator creates the first

ACLs and also specifies (during compile-time and reflec-

tor startup) which authentication mechanisms will be sup-

ported.

i) Basic end-user security: Simple client authoriza-

tion is based on IP address restrictions. Appropriate “ac-

cept” and “deny” ACL records contain IP addresses or sub-

nets (defined as an IP addresses with associated netmasks).

The decision is taken by the routing AAA module, rejected

packets are dropped and appropriate event is generated. This

decision precedes the session management phase to elimi-

nate work that would be otherwise discarded. However, ses-

sion management must be informed about changes in ACLs

to be able to discard forbidden clients immediately.

Restrictions based on user names are done indirectly—a

user connects via secure messaging channel and adds his/her

IP address into the list of accepted IP addresses. In such

scenario it is also possible to employ soft-state mechanism

when certain IP address or address range is accepted over

limited period of time only. The user is responsible to renew

the authorization in regular intervals.

j) Strong end-user security: Areas like military and

medicine require strong security support. This issue was

studied in [13] and there is a solution currently available for

the reflector.

The secure reflector consists of four parts: initialization,

authentication, communication, client disconnection. The

initialization phase processes the input parameters, initial-

izes cryptography subsystem and waits for client to connect.

In authentication phase client and server set up secure

channel using RSA secured TCP connection. The client

authentication is then based on user login and password.

When accepted, the secure connection is maintained during

the whole conference as it is used for session tear-down and

optionally for redistribution of keys if temporal re-keying is

enabled.

In communication phase reflector forwards data en-

crypted using symmetric AES cipher using key exchanged

during authentication phase with clients.

In the final client disconnection phase client asks for end

of session and is removed from the list of allowed clients by

the server. Disconnection phase can also be initiated by the

server when it shuts down.

Client side is realized by specialized local reflector which

client tools (e. g. vic or rat) connect to1. This local re-

flector processes the authentication, exchanges session keys

with the reflector (each client/server pair has its own session

key) and is responsible for data encryption and decryption

using these session keys.
k) Use of reflectors in adverse networking environ-

ments: Firewalls are spread in many places and are the

administrative solution to protect LANs and their resources

from malicious users and accidents. This protection has

a negative side effect since it means barrier to free net-

work communication and makes difficulties when deploying

applications relying on user empowered paradigm in case

when the firewall is not controlled by the end user. It is usu-

ally difficult to achieve reconfiguration of firewall for com-

munication on unusual ports. Another problem that often

goes hand in hand with firewalls is network address trans-

lation (NAT). It usually doesn’t work for TCP connection

initiated from outside of inner network and for UDP traffic

directed inside, the latter of which is a serious problem for

virtual collaborative environments that rely on bidirectional

UDP traffic for multimedia content.

A possible solution for reflector based communication

may work without touching firewall configuration at all and

it may also solve problems with NAT. First, we need to use

two reflectors—one inside the zone protected by firewall

and/or NAT and the second one outside. Reflectors need to

have special processor that performs encapsulation of pack-

ets to pretend that they belong to some well known protocol

that is passed through by most of the firewalls (HTTP being

a good example). Our experiences show that this scenario

can be deployed quite successfully2 [14]. Such scenario

works fine unless both clients are hidden in different net-

works performing NAT. In such case they need some reflec-

tor on outer public network that forms a kind of rendezvous

point toward which both communicating clients point the

tunnels of their local reflectors. Otherwise it may be impos-

sible to address each other directly.

The client reflector is the one, which initiates the TCP

connection with the desired address and port number of

main reflector because of possible NAT, while the main re-

flector outside of the firewall waits and accepts the incom-

ing TCP connections. RTP packets are sent through the TCP

connection with minimal additional header prepended. The

header consists of two 4 byte numbers, one carries the RTP

packet length and the other is a flag distinguishing RTP data

packets from RTCP packets.

V. FUTURE WORK

The work we are targeting now is to implement all de-

scribed features to the reflector. For the future we plan to

1Some of client MBone tools require a small modification to be able to
connect to the reflector running locally as they bind on the same port they
are connecting to obviously resulting in conflict in such setup.

2The packet reflector modified for communication through firewall was
tested successfully with voice communication in challenging environment
(two wireless LAN hops and application layer firewall) between ICN’01
conference in Colmar, France, and Masaryk University in Brno, Czech Re-
public.



continue to support pilot user groups to get stimulating re-

actions and new ideas as this reflector has always been de-

veloped for group communication of real groups of users

and lots of features are based on their demands. The most

active are Czech group participating in EU DataGrid (EDG)

project and IPv6 working group of the Czech research net-

work.

For the more remote future we think about integrating

our reflector into Open Grid Services Architecture frame-

work [15] to enable integration with new generation of col-

laborative Grid environments (e. g. AccessGrid version 2.x

[3]). Such integration requires incorporation of Grid service

interfaces and Grid security mechanisms into our reflector.

As already mentioned in the section on tunneling between

reflectors, another interesting direction of reflector devel-

opment is implementation of self-organizing and automatic

discovery capabilities stemming from ideas of peer-to-peer

networking either in pure or hybrid or super-peer mode [8],

[16]. This will enable reflectors to create overlay networks

that can sustain even partial network disintegration without

completely breaking overlay network as it allows the net-

works of reflectors in the remaining network clouds to work

autonomously.

Furthermore we are considering extension of traffic shap-

ing features and congestion control and development of

more advanced data transformation processors.

VI. ACKNOWLEDGMENT

The authors would like to give credits to Assoc. Prof.

Luděk Matyska for supporting our work, proof reading this

paper, and for stimulating discussions.

REFERENCES

[1] R. Wittmann and M. Zitterbart, Multicast communication: proto-
cols, programming, and applications, Morgan Kaufmann Publishers,
1999.

[2] P. Galvez, G. Denis, and H. Newman, “Networking, Videoconferenc-
ing and Collaborative Environments,” in Proceedings of CHEP’98,
Chicago, September 1998.

[3] L. Childers, T. Disz, R. Olson, M. E. Papka, R. Stevens, and
T. Udeshi, “Access Grid: Immersive Group-to-Group Collaborative
Visualization,” in Proceedings of Immersive Projection Technology,
Ames, Iowa, 2000.

[4] E. Hladká and Z. Salvet, “An Active Network Architecture: Dis-
tributed Computer or Transport Medium,” in Proceedings of ICN
2001, Berlin, 2001, vol. LNCS 2094, Springer-Verlag.

[5] J. Denemark, P. Holub, and E. Hladká, “RAP - Reflector Administra-
tion Protocol,” Tech. Rep. 9/2003, CESNET, 2003.

[6] D. Ed. Crocker and P. Overell, “Augmented BNF for Syntax Specifi-
cations: ABNF,” RFC 2234, November 1997.

[7] G. A. Roediger, “The Multi-Session Bridge,” http://www.hep.
net/chep98/PDF/230.pdf.

[8] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems,” in IFIP/ACM
International Conference on Distributed Systems Platforms (Middle-
ware), Heidelberg, Germany, 2001, pp. 329–350.

[9] V. Holer, “Videostram Merging,” Bc. Thesis FI MU, 2003.
[10] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A

Transport Protocol for Real-Time Applications,” RFC 1889, January
1996, Obsoleted by RFC 3550.

[11] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP:
A Transport Protocol for Real-Time Applications,” RFC 3550, July
2003.

[12] T. Rebok and P. Holub, “Synchronizing RTP Packet Reflector,” Tech.
Rep. 7/2003, CESNET, 2003.

[13] Tomáš Bouček, “Kryptografické zabezpečenı́ videokonferencı́,” M.S.
thesis, Military academy Brno, 2002.

[14] Z. Salvet, “Enhanced UDP packet reflector for unfriendly environ-
ments,” Tech. Rep. 16/2001, CESNET, 2001.

[15] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Sys-
tems Integration,” Open Grid Service Infrastructure WG, Global Grid
Forum, June 2002.

[16] B. Yang and H. Garcia-Molina, “Designing a super-peer network,”
IEEE International Conference on Data Engineering, 2003.


